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DIGITAL SIGNAL PROCESSING

PRE-REQUISITE:

Signal & Systems, Digital System Design, Engineering Mathematics

AIM & OBJECTIVES:

 To learn discrete Fourier transform, properties of DFT and its application to

linear filtering.

 To understand the characteristics of digital filters, design digital FIR filters

and apply these filters to filter undesirable signals in various frequency

bands.

 To design digital IIR filters and apply these filters to filter undesirable

signals in various frequency bands.

 To understand the effects of finite precision representation on digital filters.

 To understand the fundamental concepts of multi-rate signal processing and

its applications.



UNIT I DISCRETE FOURIER TRANSFORM

Review of discrete-time signals and systems – Discrete Fourier Transform (DFT) and its

properties, Circular convolution, Linear filtering using DFT, Filtering long data sequences -

overlap-save methods - Overlap-add, Fast Fourier Transform (FFT) algorithms – Fast

computation of DFT –Radix- 2 decimation in time FFT - Decimation in frequency FFT – Linear

filtering using FFT.

UNIT II DESIGN OF FINITE IMPULSE RESPONSE FILTERS

Structures for FIR systems – Transversal and Linear phase structures, Design of FIR filters –

Symmetric and Anti-symmetric FIR filters, Design of linear phase FIR filters using Windows

(Rectangular, Hamming and Hanning windows) and Frequency sampling methods

UNIT III DESIGN OF INFINITE IMPULSE RESPONSE FILTERS

Structures for IIR systems – direct, cascade, parallel forms, Comparison of FIR and IIR, Analog

filters – Butterworth filters - Chebyshev type – I filters (upto 3rd order), Analog transformation

of prototype LPF to BPF/BSF/HPF, Transformation of analog filters into equivalent digital

filters using Impulse invariant method and Bilinear Z-transform method.

UNIT IV FINITE WORD LENGTH EFFECTS

Representation of fixed and floating point numbers, ADC quantization -truncation and rounding

- quantization noise, Coefficient quantization Error – Product quantization error – Overflow error

- Round-off noise power, Limit cycle oscillation due to product round-off error- Limit cycle

oscillation due to overflow in digital filters – Principle of scaling.

UNIT V MULTI-RATE SIGNAL PROCESSING

Introduction to multi-rate signal processing – Decimation – Interpolation- Sampling rate

conversion by a rational factor - Polyphase decomposition of FIR filter – Multistage

implementation of sampling rate conversion – Design of narrow band filters–Applications of

multi-rate signal processing



UNIT -1 

INTRODUCTION 

REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS 
 

Anything that carries some information can be called as signals. Some examples are ECG, 

EEG, ac power, seismic, speech, interest rates of a bank, unemployment rate of a country, 

temperature, pressure etc. 

A signal is also defined as any physical quantity that varies with one or more independent variables. 

A discrete time signal is the one which is not defined at intervals between two successive samples 

of a signal. It is represented as graphical, functional, tabular representation and sequence. 

Some of the elementary discrete time signals are unit step, unit impulse, unit ramp, exponential 

and sinusoidal signals (as you read in signals and systems). 

 

Classification of discrete time signals 

Energy and Power signals 

 

If the value of E is finite, then the signal x(n) is called energy signal. 
 

If the value of the P is finite, then the signal x(n) is called Power signal. 

 

Periodic and Non periodic signals 

A discrete time signal is said to be periodic if and only if it satisfies the condition X (N+n) =x (n), 

otherwise non periodic 

 

Symmetric (even) and Anti-symmetric (odd) signals 

The signal is said to be even if x(-n)=x(n) 

The signal is said to be odd if x(-n)= - x(n) 

 

Causal and non causal signal 

The signal is said to be causal if its value is zero for negative values of ‘n’. 

 

Some of the operations on discrete time signals are shifting, time reversal, time scaling, signal 

multiplier, scalar multiplication and signal addition or multiplication. 

 

Discrete time systems 

A discrete time signal is a device or algorithm that operates on discrete time signals and produces 

another discrete time output. 

 

Classification of discrete time systems 

Static and dynamic systems 

A system is said to be static if its output at present time depend on the input at present time only. 

 

Causal and non causal systems 

A system is said to be causal if the response of the system depends on present and past values of the 

input but not on the future inputs. 



Linear and non linear systems 

A system is said to be linear if the response of the system to the weighted sum of inputs should be 

equal to the corresponding weighted sum of outputs of the systems. This principle is called 

superposition principle. 

 

Time invariant and time variant systems 

A system is said to be time invariant if the characteristics of the systems do not change with time. 

 

Stable and unstable systems 

A system is said to be stable if bounded input produces bounded output only. 

 

TIME DOMAIN ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS 

Representation of an arbitrary sequence 

Any signal x(n) can be represented as weighted sum of impulses as given below 
 

The response of the system for unit sample input is called impulse response of the system h(n) 
 

By time invariant property, we have 
 

The above equation is called convolution sum. 

Some of the properties of convolution are commutative law, associative law and distributive law. 

 

Correlation of two sequences 

It is basically used to compare two signals. It is the measure of similarity between two signals. Some 

of the applications are communication systems, radar, sonar etc. 

The cross correlation of two sequences x(n) and y(n) is given by 
 

One of the important properties of cross correlation is given by 

 

The auto correlation of the signal x(n) is given by 



 
 

Linear time invariant systems characterized by constant coefficient difference equation 

The response of the first order difference equation is given by 
 

The first part contain initial condition y(-1) of the system, the second part contains input x(n) of the 

system. 

The response of the system when it is in relaxed state at n=0 or 

y(-1)=0 is called zero state response of the system or forced response. 

 
The output of the system at zero input condition x(n)=0 is called zero input response of the system 

or natural response. 

 

The impulse response of the system is given by zero state response of the system 

 

The total response of the system is equal to sum of natural response and forced responses. 

 

FREQUENCY DOMAIN ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS 

 

A s we have observed from the discussion o f Section 4.1, the Fourier series representation o  

f a continuous-time periodic signal can consist of an infinite number of frequency components, 

where the frequency spacing between two successive harmonically related frequencies is 1 / T p, and 

where Tp is the fundamental period. 

Since the frequency range for continuous-time signals extends infinity on both sides it is 

possible to have signals that contain an infinite number of frequency components. 

In contrast, the frequency range for discrete-time signals is unique over the interval. A 

discrete-time signal of fundamental period N can consist of frequency components separated by 2n / 

N radians. 

Consequently, the Fourier series representation o f the discrete-time periodic signal will 

contain at most N frequency components. This is the basic difference between the Fourier series 

representations for continuous-time and discrete-time periodic signals. 



 
 
 



 
 



 



 



 



 
 
 



 
 



 



 



 
 

PROPERTIES OF DFT: 

 

LINEAR FILTERING METHODS BASED ON THE DFT 

 

Since the D F T provides a discrete frequency representation o f a finite-duration Sequence in 

the frequency domain, it is interesting to exp lore its use as a computational tool for linear system 

analysis and, especially, for linear filtering. We have already established that a system with 

frequency response H { w ) y w hen excited with an input signal that has a spectrum possesses an 

output spectrum. 

The output sequence y(n) is determined from its spectrum via the inverse Fourier transform. 

Computationally, the problem with this frequency domain approach is that are functions o f the 



continuous variable. As a consequence, the computations cannot be done on a digital computer, since 

the computer can only store and perform computations on quantities at discrete frequencies. 

On the other hand, the DFT does lend itself to computation on a digital computer. In the discussion 

that follows, we describe how the DFT can be used to perform linear filtering in the frequency 

domain. In particular, we present a computational procedure that serves as an alternative to time- 

domain convolution. 

In fact, the frequency-domain approach based on the DFT, is computationally m ore efficient 

than time-domain convolution due to the existence of efficient algorithms for computing the DFT . 

These algorithms, which are described in Chapter 6, are collectively called fast Fourier transform 

(FFT) algorithms. 
 



 
 
 

 



In this section we represent several methods for computing dft efficiently. In view of the 

importance of the DFT in various digital signal processing applications such as linear filtering, 

correlation analysis and spectrum analysis, its efficient computation is a topic that has received 

considerably attention by many mathematicians, engineers and scientists. Basically the computation 

is done using the formula method. 

 

Divide-and-Conquer Approach to Computation of the DFT 

 

The development of computationally efficient algorithms for the DFT is made possible if we 

adopt a divide-and-conquer approach. This approach is based on the decomposition of an N-point 

DFT into successively smaller DFT. This basic approach leads to a family o f computationally 

efficient algorithm s know n collectively as FFT algorithms. 

FAST FOURIER TRANSFORM 

EFFICIENT COMPUTATION OF DFT: 



T o illustrate the basic notions, let us consider the computation of an N point DFT , where N can be 

factored as a product of two integers, that is, N = L M 
 

 

 

 



 



 



 
 

 

 

 

 



 

 



 
 

 



 
 



 
 



 



 

An additional factor of 2 savings in storage of twiddle factors can be obtained by introducing 

a 90° phase offset at the mid point of each twiddle array , which can be removed if necessary at the 

ouput of the SRFFT computation. The incorporation of this improvement into the SRFFT results in 

an other algorithm also due to price called the PFFT algorithm. 

 

Implementation of FFT Algorithms 

Now that w e has described the basic radix-2 and radix -4 F FT algorithm s, let us consider 

some of the implementation issues. Our remarks apply directly to 



 



 
 



 



 



 



 



 



 



 

STRUCTURES FOR THE REALIZATION OF DISCRETE-TIME SYSTEMS 

The major factors that influence our choice o f a specific realization are computational complexity, 

memory requirements, and finite-word-length effects in the computations. 

 

STRUCTURES FOR FIR SYSTEMS 
 

Direct-Form Structure 

The direct form realization follows immediately from the non recursive difference equation given 

below 

 
 

 

 

 
Cascade-Form Structures 

The cascaded realization follows naturally system function given by equation. It is simple matter to 

factor H(z) into second order FIR system so that 

 

UNIT-2&3
STRUCTURES OF FIR AND IIR SYSTEMS 



 
 

 

Frequency-Sampling Structures 

The frequency-sampling realization is an alternative structure for an FIR filter in which the 

parameters that characterize the filter are the values o f the desired frequency response instead of the 

impulse response h(n). To derive the frequency sampling structure, we specify the desired frequency 

response at a set o f equally spaced frequencies, namely 
 

 

 

 

 

The frequency response of the system is given by 
 



 

 

 

 



 

Lattice Structure 

In this section w e introduce another F IR filter structure, called the lattice filter or 

Lattice realization. Lattice filters are used extensively in digital speech processing 

And in the implementation of adaptive filters. Let us begin the development by considering a 

sequence of FIR filters with system functions 

 



 
 

The general form of lattice structure for m stage is given by’ 
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STRUCTURES FOR IIR SYSTEMS 

In this section we consider different IIR system s structures described by the difference equation 

given by the system function. Just as in the case o f FIR system s, there are several types o f 

structures or realizations, including direct-form structures, cascade-form structures, lattice structures, 

and lattice-ladder structures. In addition, IIR systems lend them selves to a parallel form realization. 

We begin by describing two direct-form realizations. 

 

DIRECT FORM STRUCTURES: 
 



 
 

 

 

 

 

 

DIRECT FORM II 

Signal Flow Graphs and Transposed Structures 

 

A signal flow graph provides an alternative, N but equivalent, graphical representation to a 

block diagram structure that we have been using to illustrate various system realizations. T he basic 

elements o f a flow graph are branches and nodes. A signal flow graph is basically a set o f directed 

branches that connect at nodes. By definition, the signal out of a branch is equal to the branch gain 

(system function) times the signal into the branch. Furthermore, the signal at anode o f a flow graph 

is equal to the sum o f the signals from all branches connecting to the node. 



 
 

 
 

 

Cascade-Form Structures 

Let us consider a high-order IIR system with system function given by equation. Without loss o 

f generality we assume that N > M . T h e system can be factored into a cascade o f second- 

order subsystem s, such that H (z) can b e expressed as 



 
 

 

 

 

 

 

 

Parallel-Form Structures 

A parallel-form realization o f an IIR system can be obtained by performing a partial-fraction 

expansion o f H( z) . Without loss o f generality, w e again assume that N > M and that the poles are 

distinct. Then, by performing a partial-fraction expansion o f H( z ), we obtain the result 
 



 

The realization of second order form is given by 
 

The general form of parallel form of structure is f\given by 
 

Lattice and Lattice-Ladder Structures for IIR Systems 

 



 
 

 

 

 
 



The transfer function is obtained by taking Z transform of finite sample impulse response. The filters 

designed by using finite samples of impulse response are called FIR filters. 

Some of the advantages of FIR filter are linear phase, both recursive and non recursive, stable and 

round off noise can be made smaller. 

Some of the disadvantages of FIR filters are large amount of processing is required and non integral 

delay may lead to problems. 

DESIGN OF FIR FILTERS 
 

 

IIR AND FIR FILTERS 



 



 



 



 
 

 
 



 



 
 



 

 

 



 
 
 



 
 

IIR FILTER DESIGN 
 



 



 



 



 
 



 



 



 
 

 
 



 



 



 
 



 
 
 



 

 

 

 

 

 

 

 

 

 

 

 



 
 

************************************************************************ 



UNIT - IV

FINITE WORD LENGTH EFFECTS IN DIGITAL FILTER

Finite Word length Effects:
 In the design of FIR Filters, The filter coefficients are determined by the system transfer functions. These

filter co-efficient are quantized/truncated while implementing DSP System because of finite length registers.
 Only Finite numbers of bits are used to perform arithmetic operations. Typical word length is 16 bits,

24 bits, 32 bits etc.
 This finite word length introduces an error which can affect the performance of the DSP system.
 The main errors are

1. Input quantization error
2. Co-efficient quantization error
3. Overflow & round off error (Product Quantization error)

 The effect of error introduced by a signal process depend upon number of factors including the
1. Type of arithmetic
2. Quality of input signal
3. Type of algorithm implemented

1. Input quantization error
 The conversion of continuous-time input signal into digital value produces an error which is known as

input quantization error.

 This error arises due to the representation of the input signal by a fixed number of digits in A/D
conversion process.

2. Co-efficient quantization error
 The filter coefficients are compared to infinite precision. If they are quantized the frequency response of

the resulting filter may differ from the desired frequency response.
i.e poles of the desired filter may change leading to instability.

3. Product Quantization error
 It arises at the output of the multiplier
 When a ‘b’ bit data is multiplied with another ‘b’ bit coefficient the product (‘2b’ bits) should be stored

in ‘b’ bits register. The multiplier Output must be rounded or truncated to ‘b’ bits. This known as
overflow and round off error.

*****************************************************************************************
Types of number representation:
There are two common forms that are used to represent the numbers in a digital or any other digital hardware.

1. Fixed point representation
2. Floating point representation

* Explain the various formulas of the fixed point representation of binary numbers.
1. Fixed point representation
 In the fixed point arithmetic, the position of the binary point is fixed. The bit to the right represents the

fractional part of the number and to those to the left represents the integer part.



 For example, the binary number 01.1100 has the value 1.75 in decimal.
(0*21) + (1*20)  + (1*2-1)  + (1*2-2) + (0*2-3) = 1.75

In general, we can represent the fixed point number ‘N’ to any desired accuracy by the series





2n

ni

i
i

i

rCN

Where, r is called as radix.

 If r=10, the representation is known as decimal representation having numbers from 0 to 9. In this
representation the number

285.30 



21

3

10
i

i
iC

= (3*101 )+ (0*100)+ (2*10-1)+(8*10-2)+(5*10-3)
 If r=2, the representation is known as binary representation with two numbers 0 to 1.

 For example, the binary number
110.010 = (1*22 ) + (1*21) + (0*20) + (0*2-1) + (1*2-2) + (0*2-3) = 6.25

Examples:
Convert the decimal number 30.275 to binary form

(30.275)10 = (11110.01000110)2

0.275 * 20.55 0
0.55 * 2 1.10 1
0.10 * 2 0.20 0
0.20 * 2 0.40 0
0.40 * 2 0.80 0
0.80 * 2 1.60 1
0.60 * 2 1.20 1
0.20 * 2 0.40 0

In fixed point arithmetic =, the negative numbers are represented by 3 forms.
1. Sign-magnitude form
2. One’s complement form
3. Two’s complement form
1.1 Sign-magnitude form:

 Here an additional bit called sign bit is added as MSB.
o If this bit is zero  It is a positive number
o If this bit is one  It is a positive number

 For example
o 1.75 is represented as 01.110000.
o -1.75 is represented as 11.110000

1.2 One’s complement form:
 Here the positive number is represented same as that in sign magnitude form.
 But the negative number is obtained by complementing all the bits of the positive number
 For eg: the decimal number -0.875 can be represented as

o (0.875)10=(0.111000)2

o (-0.875)10=(1.000111)2 0.111000
↓ ↓↓↓↓↓↓ (Complement each bit)
1.000111



1.3 Two’s complement form:
 Here the positive numbers are represented as same in sign magnitude and one’s complement form.
 The negative numbers are obtained by complementing all the bits of the positive number and adding

one to the least significant bit
(0.875)10=(0.111000)2

↓ ↓↓↓↓↓↓ (Complement each bit)
1.000111

+                 1
1.001000

(-0.875)10=(1.001000)2

Examples:
 Find the sign magnitude, 1’s complement, 2’s complement for the given numbers.

1.
32

7


2.
8

7


3.
8

7


1.
32

7


0.21875 * 20.43750 0
0.43750 * 20.87500 0
0.87500* 2 1.750000 1
0.75* 2 1.50 1
0.50* 2 1.00 1

32

7
 =(-0.21875)10 =(1.00111)2

Sign magnitude form = 1.00111
1’s complement form = 1.11000
2’s complement form = 1.11001

2.
8

7


0.875 * 21.75 1
0.750 * 21.500 1
0.500 * 21.000 1

8

7
 =(-0.875)10 =(0.111)2

Sign magnitude form = 0.111
1’s complement form = 1.000
2’s complement form = 1.001

3.
8

7


Sign magnitude form = 0.111
1’s complement form = 0.111
2’s complement form = 0.111

Addition of two fixed point numbers:

 Add (0.5)10 + (0.125)10



(0.5)10 = (0.100)2

(0.125)10 = (0.001)2

(0.101)2 = (0.625)10

 Addition of two fixed point numbers causes an overflow.
For example

(0.100)2

(0.101)2

(1.001)2 = (-0.125)10 in sign magnitude form
Subtraction of two fixed point numbers:
 Subtraction of two numbers can be easily performed easily by using two’s complement representation.
 Subtract 0.25 from 0.5

0.25 * 20.50 0 Sign magnitude form = (0.010)2

0.50 * 21.00 1 1’s complement form = (1.101)2

0.00 * 20.00 0 2’s complement form = (1.110)2

(0.5)10 = (0.100)2

-(0.25)10 = (1.110)2 Two’s complement of -0.25
(10.010)2

Here the carry is generated after the addition. Neglect the carry bit to get the result in decimal.
(0.010)2 = (0.25)10

 Subtract 0.5 from 0.25
0.5 * 21.00 1 Sign magnitude form = (0.100)2

0.00 * 20.00 0 1’s complement form = (1.011)2

0.00 * 20.00 0 2’s complement form = (1.100)2

(0.25)10 = (0.010)2

-(0.5)10 = (1.100)2

(1.110)2

Here the carry is not generated after the addition. So the result is negative.
Multiplication in fixed point arithmetic:
 Here the sign magnitude components are separated.

 The magnitudes of the numbers are multiplied. Then the sign of the product is determined and applied to
the result.

 In the fixed point arithmetic, multiplication of two fractions results in a fraction.

 For multiplications with fractions, overflow can never occur.
 Eg:

(0.1001)2 * (0.0011)2 = (0.00011011)2

2. Floating point representation
 Here, a number ‘x’ is represented by

X=M.re

Where, M  Mantissa which requires a sign bit for representing positive number and negative
numbers.

R base (or) radix
e exponent which require an additional and it may be either positive or negative.

o For eg, 278 can be represented in floating point representation.

278 =
1000

1000X278
= 0.278*103

0.278 Mantissa (M)
10  base (or) radix (r)
3  exponents (e)



 Similarly, to represent a binary floating point number
X=M.2e in which the fractional part of a number should fall (or) lie in the range of 1/2 to 1.

5 =
8

8X5
0.625 X23

Mantissa (M) = 0.625
Base (or) radix (r) = 2
Exponent (e) = 3

 Some decimal numbers and their floating point representations are given below:
4.5  0.5625 X 23 =0.1001 X 2011

1.5  0.75 X 21 =0.1100 X 2001

6.5  0.8125 X 23 =0.1100 X 2011

0.625  0.625 X 20 =0.1010 X 2000

 Negative floating point numbers are generally represented by considering the mantissa as a fixed point
number. The sign of the floating point number is obtained from the first bit of mantissa.

 To represent floating point in multiplication

Consider 1
11

erMX 
2

22
erMX 

   21

2121 *
ee

rMMXX 
Example

Given 12
1 10*5.3 X ,

6
2 10*75.4X . Find the product 21XX

X=(3.5 X 4.75) 10(-12+6)

= (16.625)10-6  in decimal
In binary: (1.5)10 X (1.25)10 = (210.75) X (210.625)

= 2001 X 0.1100 X 2001 X 0.1010
= 2010 X 0.01111

Addition and subtraction:
 Here the exponent of a smaller number is adjusted until it matches the exponent of a larger number.

 Then, the mantissa are added or subtracted
 The resulting representation is rescaled so that its mantissa lies in the range 0.5 to 1.

 Eg: Add (3.0)10 & (0.125)10

(3.0)10 =2010 X 0.1100 = 1er X 1M

(0.125)10 =2000 X 0.0010 = 2er X 2M

Now adjust e2 Such that e1=e2

(0.125)10 =2010 X 0.0000100
Addition 2010 (0.110000  + 0.0000100) 2010 X 0.110010
Subraction2010 X 1.001101

Compare floating point with fixed point arithmetic.
Sl.No Fixed point arithmetic Floating point arithmetic

1 Fast operation Slow operation
2 Relatively economical More expensive because of costlier hardware
3 Small dynamic range Increased Dynamic range
4 Round off errors occurs only for

addition
Round off errors can occur with addition and
multiplication

5 Overflow occur in addition Overflow does not arise
6 Used in small computers Used in large general purpose computers.



Quantization:
*Discuss the various methods of quantization.
*Derive the expression for rounding and truncation errors
* Discuss in detail about Quantization error that occurs due to finite word length of registers.
The common methods of quantization are

1. Truncation
2. Rounding

1. Truncation
 The abrupt termination of given number having a large string of bits (or)
 Truncation is a process of discarding all bits less significant than the LSB that is retained.

 Suppose if we truncate the following binary number from 8 bits to 4 bits, we obtain
 0.00110011 to 0.0011

(8 bits) (4 bits)
 1.01001001 to 1.0100

(8 bits) (4 bits)
 When we truncate the number, the signal value is approximated by the highest quantization level that is

not greater than the signal.
2. Rounding (or) Round off
 Rounding is the process of reducing the size of a binary number to finite word size of ‘b’ bits such that

the rounded b-bit number is closest to the original unquantised number.
Error Due to truncation and rounding:
 While storing (or) computation on a number we face registers length problems. Hence given number is

quantized to truncation (or) round off.
i.e. Number of bits in the original number is reduced register length.

Truncation error in sign magnitude form:
 Consider a 5 bit number which has value of

0.110012  (0.7815)10

 This 5 bit number is truncated to a 4 bit number
0.11002  (0.75)10

i.e. 5 bit number 0.11001 has ‘l’ bits
4 bit number 0.1100   has ‘b’ bits

 Truncation error, et = 0.1100 – 0.11001
= -0.00001  (-0.03125)10

 Here original length is ‘l’ bits. (l=5). The truncated length is ‘b’ bits.
 The truncation error, et = 2-b-2-l

= -(2-l-2-b)
et = -(2-5-2-4) = -2-1

 The truncation error for a positive number is

 lb   22  te 0  Non causal

 The truncation error for a negative number is

0  te   lb   22  Causal

Truncation error in two’s complement:
 For a positive number, the truncation results in a smaller number and hence remains same as in the case

of sign magnitude form.
 For a negative number, the truncation produces negative error in two’s complement

 lb   22  te   lb   22



Round off error (Error due to rounding):
 Let us consider a number with original length as ‘5’ bits and round off length as ‘4’ bits.

0.11001    tooffRound 0.1101

 Now error due to rounding re =
2

22 lb  

Where bNumber of bits to the right of binary point after rounding
LNumber of bits to the right of binary point before rounding

 Rounding off error for positive Number:

2

22 lb  
  re 0

 Rounding off error for negative Number:

0  re 
2

22 lb  

 For two’s complement

2

22 lb  
  re 

2

22 lb  

***************************************************************************************
Quantization Noise:
*Derive the expression for signal to quantization noise ratio
*What is called Quantization Noise? Derive the expression for quantization noise power.

 The analog signal is converted into digital signal by ADC
 At first, the signal x(t) is sampled at regular intervals t=nT, where n=0,1,2… to create sequence x(n).

This is done by a sampler.

 Then the numeric equivalent of each sample x(n) is expressed by a finite number of bits giving the
sequence xq(n)

 The difference signal e(n)= xq(n)- x(n) is called quantization noise (or) A/D conversion noise.

 Let us assume a sinusoidal signal varying between +1 & -1 having a dynamic range 2
 ADC employs (b+1) bits including sign bit. In this case, the number of levels available for quantizing

x(n) is 2b+1.
 The interval between the successive levels is

q 
12

2
b

 b2

Where q  quantization step size
If b=3 bits, then q=2-3=0.125

***************************************************************************************
Quantization Noise power:
Input Quantization error:
*Derive the equation for quantization noise power (or) Steady state Input Noise Power.



Probability density function for round off error in A/D conversion is

If rounding is used for quantization, which is bounded by  
22

q
ne

q
 , then the error lies between

2

q
 to

2

q
with equal probability, where q quantization step size.

Properties of analog to digital conversion error, e(n):
1. The error sequence e(n) is a sample sequence of a stationary random process.
2. The error sequence is uncorrelated with x(n) and other signals in the system.
3. The error is a white noise process with uniform amplitude probability distribution over the range of

quantization error.
The variance of e(n) is given by

     neEneEe
222  ---------------------------->(1)

Where   neE 2 Average of e2(n)

  neE Mean value of e(n).

For rounding, e(n) lies between
2

q
 and

2

q
with equal probability

      




 deepneneE 22 ---------------------------->(2)

  ,
1

q
ep   

22

q
ne

q
 ---------------------------->(3)

Substituting (3) in (2)
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neE ------------------------------->(4)

   0neE

   02 neE ------------------------------------------->(5)

Substituting (4) and (5) in (1)
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1 3q

q
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2
2 q
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In general, qb
b

 2
2

1
-------------------------------------------->(7)

 
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2
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2
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e


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12

2 2
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b

e



 ----------------------------------------------->(8)

Equation (8) is known as the steady state noise power due to input quantization.

b

R
q

2
  in two’s complement representation.

12 


b

R
q  in sign magnitude (or) one’s complement representation.

R  Range of analog signal to be quantized.
Steady state Output Noise power:

After quantization, we have noise power 2
e as input noise power. Therefore, Output noise power of system is

given by

 




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222

n
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where h(n) impulse response of the system.
Let error E(n) be output noise power due to quantization
Error      nhnenE 

   





0k

knenh



The variance of error E(n) is called output noise power, 2
e .

By using Parseval’s theorem,
2
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Where the closed contour integration is evaluated using the method of residue by taking only the poles that
lie inside the unit circle.

Z transform of h(n),     n

n
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By Inverse Z transform,      dZZZH
j

nh n 1
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Substituting (11) in (10)
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Substituting (12) in (9)
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Problem:
The output signal of an A/D converter is passed through a first order low pass filter, with transfer
function given by

 
1.a0for
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
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)( Find the steady state output noise power due to quantization at the

output of the digital filter. [Nov/Dec-2015]
Solution:
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Solution:
The impulse response for the above filter is given by

Taking Z-transform on both sides we have

We know
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Substituting H z and H z value in the above equation we get
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**************************************************************************************
Find the steady state variance of the noise in the output due to quantization of input for the first order
filter.



***************************************************************************************
The output of the A/D converter is applied to a digital filter with the system function
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Find the output noise power of the digital filter, when the input signal is quantized to 7 bits.
Given:
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Solution:
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Now the poles of H(Z)H(Z-1)Z-1 are p1=0.72 , p2=1.3889
Output noise power due to input quantization
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Where p1,p2,…..pn are the poles of H(Z)H(Z-1) Z-1 that lies inside the unit circle in z-plane.
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Consider the transfer function )()()( 21 zHzHzH  where 1
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Find the output round off noise power. Assume 6.05.0 21   and and find output round off noise
power.
Solution:
The round off noise model for )()()( 21 zHzHzH  is given by,
From the realization we can find that the noise transfer function seen by noise source e1(n) is H(z), where,
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The total steady state noise variance can be obtained, we have
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If a1 and a2 are less than the poles z=1/a1 and z=1/a2 lies outside of the circle .1z So, the residue of H(z) H(z-1) z-

1at z=1/a1 and z=1/a2 are zero. Consequently we have,
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The steady state noise power for 6.0,5.0 21  aa is given by
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*************************************************************************************

Draw the quantization noise model for a second order system 221cos21
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and find the

steady state output noise variance.
Solution:
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******************************************************************************
Co-efficient quantization error
 We know that the IIR Filter is characterized by the system function
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 After quantizing ,
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Where  qka  kk aa 

 qkb  kk bb 

 The quantization of filter coefficients alters the positions of the poles and zeros in z-plane.
1. If the poles of desired filter lie close to the unit circle, then the quantized filter poles may lie outside

the unit circle leading into instability of filter.
2. Deviation in poles and zeros also lead to deviation in frequency response.

***************************************************************************************
Consider a second order IIR filter with find the effect on quantization

on pole locations of the given system function in direct form and in cascade form. Take b=3bits.
[Apr/May-10] [Nov/Dec-11]

Solution:
Given that,
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The roots of the denominator of H(z) are the original poles of H(z). let the original poles of H(z) be p1 and

p2.

Here p1=0.5 and p2=0.45
Direct form I:

Let us quantize the coefficients by truncation.
Convert to Truncate to Convert to

.9510 .11112 .1112 .87510

Binary 3-bits decimal
Convert to Truncate to Convert to
.22510 .00112 .0012 .12510

Binary 3-bits decimal
Let be the transfer function of the IIR system after quantizing the coefficients.

On cross multiplying the above equation we get,

Cascade form:
Given that

In cascade realization the system can be realized as cascade of first order sections.

H(z)=H1(z)+H2(z)

Where,

Let us quantize the coefficients of H1(z) and H2(z) by truncation.
Convert to Truncate to Convert to
.510 .10002 .1002 .510

Binary 3-bits decimal
Convert to Convert to Convert to
.4510 .01112 .0112 .37510

Binary 3-bits decimal
let , be the transfer function of the first-order sections after quantizing the coefficients.
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***************************************************************************************
Round off effects and overflow in digital filter:
*Explain in detail about round off effects in digital filters.
 The presence of one or more quantizer in the realization of a digital filter results in a non-linear device.

i.e. recursive digital filter may exhibit undesirable oscillations in its output
 In the finite arithmetic operations, some registers may overflow if the input signal level becomes large.
 These overflow represents non-linear distortion leading to limit cycle oscillations
 There are two types of limit cycle oscillations which includes

1. Zero input limit cycle oscillations (Low amplitude compared to overflow limit cycle oscillations)
2. Over flow limit cycle oscillations.

Zero input limit cycle oscillations
 The arithmetic operations produces oscillations even when the input is zero or some non zero constant

values. Such oscillations are called zero input limit cycle oscillations.
Overflow limit cycle oscillations
 The limit cycle occurs due to the overflow of adder is known as overflow limit cycle oscillations.
Dead Band:

The limit cycle occurs as a result of quantization effect in multiplication. The amplitude of the
output during a limit cycle is confined to a range of values called the dead band of the filter.
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**************************************************************************************
Problem: Consider a 1st order FIR system equation )1()()(  naynxny with
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Find the limit cycle effect and the dead band. Assume b=4 and a=0.95. (Nov/Dec-12)(Nov/Dec-15)
[May/June-2016]
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The dead band of the filter is 0.625. When 5n the output remains constant at 0.625 causing
limit cycle oscillations.
***************************************************************************************
Overflow Limit cycle oscillations:
*What are called overflow oscillations? How it can be prevented?
 We know that the limit cycle oscillation is caused by rounding the result of multiplication.
 The limit cycle occurs due to the overflow of adder is known as overflow limit cycle oscillations.\
 Several types of limit cycle oscillations are caused by addition, which makes the filter output oscilate

between maximum and minimum amplitudes.
 Let us consider 2 positive numbers n1 & n2

n1=0.1117/8
n2=0.1106/8
n1 + n2=1.101-5/8 in sign magnitude form.
The sum is wrongly interpreted as a negative number.

 The transfer characteristics of an saturation adder is shown in fig below
where n  The input to the adder

f(n)  The corresponding output

Saturation adder transfer characteristics
 From the transfer characteristics, we find that when overflow occurs, the sum of adder is set equal to the

maximum value.
***************************************************************************************
Signal Scaling:

 Saturation arithmetic eliminates limit cycles due to overflow, but it causes undeniable signal distortion
due to the non linearity of the clipper.

 In order to limit the amount of non linear distortion, it is important to scale input signal and unit sample
response between input and any internal summing node in the system to avoid overflow.

Realization of a second order IIR Filter
 Let us consider a second order IIR filter as shown in the above figure. Here a scale factor S0 is

introduced between the input x(n) and the adder 1 to prevent overflow at the output of adder 1.

Explain how reduction of round-off errors is achieved in digital filters.



 Now the overall input-output transfer function is

Now the transfer function

From figure

Using Schwartz inequality

Applying parsevals theorem

By substituting all values

Which gives us,
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Where I=

Note:
 Because of the process of scaling, the overflow is eliminated. Here so is the scaling factor for the first

stage.

 Scaling factor for the second stage = S01 and it is given by
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For the given transfer function,  
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ZH , find scaling factor so as to avoid overflow in

the adder ‘1’ of the filter.

Given:
D(Z) = 1-0.5Z-1

D(Z-1) = 1-0.5 Z
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0S =
333.1

1

= 0.866

***************************************************************************************
Consider the recursive filter shown in fig. The input x(n) has a range of values of ±100V, represented
by 8 bits. Compute the variance of output due to A/D conversion process. (6)

Solution:
Given the range is ±100V
The difference equation of the system is given by , whose impulse response h(n)
can be obtained as

***************************************************************************************
The input to the system y(n)=0.999y(n-1)+x(n) is applied to an ADC. What is the power produced by
the quantization noise at the output of the filter if the input is quantized to a) 8 bits b)16 bits. May-07
Solution:

y(n)=0.999y(n-1)+x(n)
Taking z-transform on both sides
Y(z)=0.999z-1Y(z)+X(z)
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Where p1,p2,……pN are poles of H(z)H(z-1)z-1, that lies inside the unit circle in z-plane.

a) b+1=8 bits(Assuming including sign bit)

b) b+1=16 bits

***************************************************************************************
Find the effect of coefficient quantization on pole locations of the given second order IIR system, when
it is realized in direct form I and in cascade form. Assume a word length of 4 bits through truncation.

Solution:
Direct form I
Let b=4 bits including a sign bit
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After truncation we get
(0.111)2=(0.875)10

(0.2)10=(0.00110…)2

After truncation we get
(0.001)2=(0.125)10

The system function after coefficient quantization is

Now the pole locations are given by
z1=0.695
z2=0.178

If we compare the Poles of H(z) and we can observe that the poles of deviate very much from
the original poles.

Cascade form

After truncation we get
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(0.100)2=(0.5)10

After truncation we get
(0.011)2=(0.375)10

(0.4)10=(0.01100…)2

The system function after coefficient quantization is

The pole locations are given by
z1=0.5
z2=0.375
on comparing the poles of the cascade system with original poles we can say that one of the poles is same
and other pole is very close to original pole.
***************************************************************************************
A LTI system is characterized by the difference equation y(n)=0.68y(n-1)+0.5x(n).
The input signal x(n) has a range of -5V to +5V, represented by 8-bits. Find the quantization step size,
variance of the error signal and variance of the quantization noise at the output.
Solution:
Given
Range R=-5V to +5V = 5-(-5) =10
Size of binary, B= 8 bits (including sign bit)
Quantization step size,

The difference equation governing the LTI system is
Y (n) =0.68y (n-1) +0.15x (n)
On taking z transform of above equation we get

1 0

0 .4 2
( 0 .4 )

0 .8

0

0 .8 2

1 .6
0

0 .6 2

1 .2
1

0 .2 2

0 .4
1

0 .4 2

0 .8
0























1 1

1
( )

(1 0.5 )(1 0.375 )
H z

z z 
 

8 8

2 2
2 4

10
0.0390625

2 2
0.0390625

var , 1.27116*10
12 12e

R
q

q
iance of error signal  

  

  



Now, poles of H (z) H (z-1) z-1 are p1=0.68, p2=1.4706
Here, p1=0.68 is the only pole that lies inside the unit circle in z-plane
Variance of the input quantization noise at the output.
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Analog to digital conversion:

10. Explain the ADC and DAC in detail.
A/D conversion has three process.

Basic parts of an analog-to digital (A/D) converter

1. Sampling
 Sampling is the conversion of a continuous- tome signal into a discrete-time signal obtained by taking

the samples of continuous-time signal at discrete instants.
 Thus if xa(t) is the input to the sampler, the output is xa(nT)≡x(n), where T is called the sampling

interval.
2. Quantisation
 The process of converting a discrete-time continuous amplitude signal into digital signal is called

quantization.

 The value of each signal sample is represented by a value selected from a finite set of possible values.
 The difference between the unquantised sample x(n) and the quantized output xq(n) is called the

quantization error or quantization noise.
eq(n)= xq(n)-x(n)

 To eliminate the excess bits either discard them by the process of truncation or discard them by rounding
the resulting number by the process of rounding.

 The values allowed in the digital signals are called the quantization levels

 The distance ∆ between two successive quantization levels is called the quantization step size or
resolution.

 The quality of the output of the A/D converter is measured by the signal-to-quantization noise ratio.
3. Coding
 In the coding process, each discrete value xq(n) is represented by a b-bit binary sequence.

Block diagram of basic elements of an A/D Converter
Digital to analog conversion:
 To convert a digital signal into an analog signal, digital to analog converters are used.



Basic operations in converting a digital signal into an analog signal
 The D/A converter accepts, at its input, electrical signals that corresponds to a binary word, and

produces an output voltage or current that is proportional to the value of the binary word.
 The task of D/A converter is to interpolate between samples.
 The sampling theorem specifies the optimum interpolation for a band limited signal.

 The simplest D/A converter is the zero order hold which holds constant value of sample until the next
one is received.

 Additional improvement can be obtained by using linear interpolation to connect successive samples
with straight line segment.

 Better interpolation can be achieved y using more sophisticated higher order interpolation techniques.
 Suboptimum interpolation techniques result in passing frequencies above the folding frequency. Such

frequency components are undesirable and are removed by passing the output of the interpolator through
a proper analog filter which is called as post filter or smoothing filter.

 Thus D/A conversion usually involve a suboptimum interpolator followed by a post filter.
***************************************************************************************



UNIT 5 

MULTIRATE DIGITAL SIGNAL PROCESSING 
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OUTCOMES:

At the end of the course, the student should be able to

 Apply DFT and FFT algorithms for the analysis of digital signals and systems.

 Design FIR filters for various applications.

 Design IIR filters for various applications.

 Characterize the effects of finite precision representation on digital filters.

TEXT BOOKS:

1. John G.Proakis and Dimitris G. Manolakis, “Digital signal processing - Principles, algorithms

and applications”, Pearson education / Prentice hall, Fourth edition, 2007.
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