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DIGITAL SIGNAL PROCESSING

PRE-REQUISITE:

Signal & Systems, Digital System Design, Engineering Mathematics

AIM & OBJECTIVES:

¢ To learn discrete Fourier transform, properties of DFT and its application to
linear filtering.

¢ To understand the characteristics of digital filters, design digital FIR filters
and apply these filters to filter undesirable signals in various frequency
bands.

s To design digital 1IR filters and apply these filters to filter undesirable
signalsin various frequency bands.

¢ To understand the effects of finite precision representation on digital filters.

+ To understand the fundamental concepts of multi-rate signal processing and
its applications.




UNIT | DISCRETE FOURIER TRANSFORM
Review of discrete-time signals and systems — Discrete Fourier Transform (DFT) and its
properties, Circular convolution, Linear filtering using DFT, Filtering long data sequences -
overlap-save methods - Overlap-add, Fast Fourier Transform (FFT) agorithms — Fast
computation of DFT —Radix- 2 decimation in time FFT - Decimation in frequency FFT — Linear
filtering using FFT.

UNIT Il DESIGN OF FINITE IMPULSE RESPONSE FILTERS
Structures for FIR systems — Transversal and Linear phase structures, Design of FIR filters —
Symmetric and Anti-symmetric FIR filters, Design of linear phase FIR filters using Windows

(Rectangular, Hamming and Hanning windows) and Frequency sampling methods

UNIT Il DESIGN OF INFINITE IMPUL SE RESPONSE FILTERS
Structures for IR systems — direct, cascade, parallel forms, Comparison of FIR and I1IR, Anaog
filters — Butterworth filters - Chebyshev type — | filters (upto 3rd order), Anaog transformation
of prototype LPF to BPF/BSF/HPF, Transformation of analog filters into equivalent digital

filters using Impulse invariant method and Bilinear Z-transform method.

UNIT IV FINITEWORD LENGTH EFFECTS
Representation of fixed and floating point numbers, ADC quantization -truncation and rounding
- quantization noise, Coefficient quantization Error — Product quantization error — Overflow error
- Round-off noise power, Limit cycle oscillation due to product round-off error- Limit cycle

oscillation due to overflow in digital filters— Principle of scaling.

UNIT V MULTI-RATE SIGNAL PROCESSING
Introduction to multi-rate signal processing — Decimation — Interpolation- Sampling rate
conversion by a rational factor - Polyphase decomposition of FIR filter — Multistage
implementation of sampling rate conversion — Design of narrow band filters-Applications of

multi-rate signal processing




UNIT -1
INTRODUCTION
REVIEW OF DISCRETE TIME SIGNALS AND SYSTEM

Anything that carries some information can be called as signals. Some examples are ECG,
EEG, ac power, seismic, speech, interest rates of a bank, unemployment rate of a country,
temperature, pressure etc.
A signal is also defined as any physical quantity that varies with one or more independent variables.
A discrete time signal is the one which is not defined at intervals between two successive samples
of a signal. It is represented as graphical, functional, tabular representation and sequence.
Some of the elementary discrete time signals are unit step, unit impulse, unit ramp, exponential
and sinusoidal signals (as you read in signals and systems).

Classification of discrete time signals
Energy and Power signals

o
£ = Z Ix(n))?
n==2
If the value of E is finite, then the signal x(n) is called energy signal.

A

. ] A
F = ."\-h—]:nm __—_—ZN T n;, lx(n}

If the value of the P is finite, then the signal x(n) is called Power signal.

Periodic and Non periodic signals
A discrete time signal is said to be periodic if and only if it satisfies the condition X (N+n) =x (n),
otherwise non periodic

Symmetric (even) and Anti-symmetric (odd) signals
The signal is said to be even if x(-n)=x(n)
The signal is said to be odd if x(-n)= - x(n)

Causal and non causal signal
The signal is said to be causal if its value is zero for negative values of ‘n’.

Some of the operations on discrete time signals are shifting, time reversal, time scaling, signal
multiplier, scalar multiplication and signal addition or multiplication.

Discrete time systems
A discrete time signal is a device or algorithm that operates on discrete time signals and produces
another discrete time output.

Classification of discrete time systems
Static and dynamic systems
A system is said to be static if its output at present time depend on the input at present time only.

Causal and non causal systems
A system is said to be causal if the response of the system depends on present and past values of the
input but not on the future inputs.




Linear and non linear systems

A system is said to be linear if the response of the system to the weighted sum of inputs should be
equal to the corresponding weighted sum of outputs of the systems. This principle is called
superposition principle.

Time invariant and time variant systems
A system is said to be time invariant if the characteristics of the systems do not change with time.

Stable and unstable systems
A system is said to be stable if bounded input produces bounded output only.

TIME DOMAIN ANALYSI EDISCRETE TIME SIGNALS AND SYSTEM
Representation of an arbitrary sequence
Any signal x(n) can be represented as weighted sum of impulses as given below

x(n) = Z x(k)b(n — k)
k=—a¢

The response of the system for unit sample input is called impulse response of the system h(n)

~
viny = Tlem] =T | ) xtkydin — k)
K==
=8
= Z ARVT {8 — k)]
b=—n
T
= Z xikphin. k)
h=—
By time invariant property, we have
- =
vin) = Z x(k)hin — k)
k=—oC

The above equation is called convolution sum.
Some of the properties of convolution are commutative law, associative law and distributive law.

Correlation of two sequences

It is basically used to compare two signals. It is the measure of similarity between two signals. Some
of the applications are communication systems, radar, sonar etc.

The cross correlation of two sequences x(n) and y(n) is given by

b
relly= Y xmyin—0  1=0.x1 %2 ...
n=-—o

One of the important properties of cross correlation is given by

Fev(l) = rype(=1)

The auto correlation of the signal x(n) is given by




ol

rex(l) = Z x(mx(n = 1)

A==0C

Linear time invariant systems characterized by constant coefficient difference equation
The response of the first order difference equation is given by

y(n) =a"y(-)+ 3 a'x(n—k) n>0
k=0

The first part contain initial condition y(-1) of the system, the second part contains input x(n) of the
system.

The response of the system when it is in relaxed state at n=0 or

y(-1)=0 is called zero state response of the system or forced response.

n
}-z_\[nlzziﬂlxl’n—h n=>0

k=)

The output of the system at zero input condition x(n)=0 is called zero input response of the system
or natural response.

The impulse response of the system is given by zero state response of the system

Yis(n) = Zﬂka(n — k)
k=0
=4" n>0

The total response of the system is equal to sum of natural response and forced responses.
FREQUENCY DOMAIN ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS

A s we have observed from the discussion o f Section 4.1, the Fourier series representation o
f a continuous-time periodic signal can consist of an infinite number of frequency components,
where the frequency spacing between two successive harmonically related frequencies is 1 / T p, and
where Tp is the fundamental period.

Since the frequency range for continuous-time signals extends infinity on both sides it is
possible to have signals that contain an infinite number of frequency components.

In contrast, the frequency range for discrete-time signals is unique over the interval. A
discrete-time signal of fundamental period N can consist of frequency components separated by 2n /
N radians.

Consequently, the Fourier series representation o f the discrete-time periodic signal will
contain at most N frequency components. This is the basic difference between the Fourier series
representations for continuous-time and discrete-time periodic signals.




4.2.1 The Fourier Series for Discrete-Time Periodic
Signals

Suppose that we are given a periodic sequence x(n) with period N, that is. xi(n) =
x{n + N) for all n. The Fourier series representation for x(n) consists of N har-
monically related exponential functions

p}.'_’ﬂkn/:\' i O‘ 1 .... A,' _ 1
and is expressed as
N=)
) H
x{n) = Z crekeiN (4.2.1)
s=0

where the {¢;} are the coefficients in the series representation.
To derive the expression for the Fourier coefficients, we use the following
formula:

Nz.l pi27knIN _ N, k=0.£N 2N, ... (4.2.2)
0, otherwise o

n={)

Note the similarity of (4.2.2) with the continuous-time counterpart in (4.1.3). The
proof of (4.2.2) follows immediately from the application of the geometric sum-
mation formula

N=1 N. a=1
=3 1—=a" 4.2.3)
fz:{, - a#l

The expression for the Fourier coefficients c; can be obtained by multiplying
both sides of (4.2.1) by the exponential ¢=/*""/* and summing the product from
n=0ton=N ~ 1. Thus

N-
E x(n)e /2N —

n=>0

If we perform the summation over n first, in the right-hand side of (4.2.4),
we obtain

Z Z Cke/h'f&—l)n/(\’ (4.2.4)

N-—| N=]
n =(| &:(]

N-1
Dtk —ln/N N k=1=0,£N,£2N,...
}..."”k hn/N - . ' . N
ZU £ [ 0. otherwise (42:3)

where we have made use of (4.2.2). Therefore. the right-hand side of (4.2.4)
reduces to N¢; and hence

1 A= i g
== ;m Je /2N ) 20,1, N =1 (4.2.6)
Thus we have the desired expression for the Founer coefficients in terms of the
signal x(n).




4.2.3 The Fourier Transform of Discrete-Time Aperiodic
Signals

Just as in the case of continuous-time aperiodic energy signals, the frequency anal-
ysis of discrete-time aperiodic finite-energy signals involves a Fourier transform of
the time-domain signal. Consequently, the development in this section parallels
to a large extent, that given in Section 4.1.3.

The Fourier transform of a finite-energy discrete-time signal x(n) is defined as
o
Xiw) = Z x(m)e=" (4.2.23)
n=-0o
Physicallv. X(w} represents the frequency content of the signal x(n). In other
words, Xi(w) is a decomposition of x(n) into its frequency components.

We observe two basic differences between the Founer transform of a discrete-
ttme finite-energy signal and the Fourier transform of a finite-energy analog signal.
First, for continuous-time signals, the Fourier transform, and hence the spectrum
of the signal, have a frequency range of {(—oc, oc). In contrast, the frequency
range for a discrete-time signal is unique over the frequency interval of (—m. )
or, equivalently, (0. 27). This property is reflected in the Fourier transform of the

signal. Indeed. X (w) is periodic with period 2. that is,

XI_LL"."ZHR‘) —_ Z x{n}eﬂjinu—lnkur
n=-2¢
E x(n)e /ute=Simhn {4.2.24)
==
e
= Y x(me " =X(w)

A===0C

Hence X (w) 1s periodic with period 2. But this property is just a conseguence of
the fact that the frequency range for any discrete-time signal 1s himited to (-, )
or (0, 2m). and any frequency outside this interval is equivalent to a frequency
within the interval.

The second basic difference is also a conseguence of the discrete-time nature
of the signal. Since the signal is discrete in time. the Fourier transform of the
signal involves a summation of terms instead of an integral, as in the case of
continuous-time signals.

Since X(w) is a periodic function of the frequency variable w, it has a Fourier
series expansion, provided that the conditions for the existence of the Fourier
series, described previously, are satisfied. In fact., from the definition of the
Fourier transform X (w) of the sequence x(n), given by (4.2.23), we observe that
X(w) has the form of a Fourier series. The Fourner coefficients in this series
expansion are the values of the sequence x(n).




To demonstrate this point. let us evaluate the sequence x(n) from X (w). First,
we multiply both sides (4.2.23) by ¢/*" and integrate over the interval (-, 7).

Thus we have
" 1 o
f Xiwie'*"dw = f I: E x{n)e‘f“‘"] e/ d e (4.2.25)

n =% | np==-oc

The integral on the right-hand side of (4.2.25) can be evaluated if we can inter-
change the order of summation and integration. This interchange can be made if
the senes
N
Xplw)= Y x{me "

n=—N

converges uniformly to X (w) as N — oc, Uniform convergence means that, for
every w, Xy(w) — Xlw), as N — oc. The convergence of the Fourier transform
is discussed in more detail in the following section. For the moment. let us as-
sume that the series converges uniformly, so that we can interchange the order of
summation and integration in (4.2.25}. Then

T 27 m=n
Jwim—n) - 3
-/:rre dm_|ﬂ‘ m 4 n

Consequently,

= i Y
Jurim—ri _ —Hltmj- m=n
E x{n,}[w e dw = lo‘ m=n (4.2.26)

A= =0

By combining (4.2.25) and (4.2.26). we obtain the desired result that

1
x(n) = 5 X{w)e!"dw (4.2.27

If we compare the integral in (4.2.27) with (4.1.9), we note that this is just
the expression for the Founer series coefficient for a function that is periodic with
peniod 2x. The only difference between (4.1.9) and (4.2.27) is the sign on the
exponent in the integrand, which 1s a consequence of our definition of the Fourier
transform as given by (4.2.23). Therefore. the Fourier transform of the sequence
x(n}, defined by (4.2.23), has the form of a Fourier series expansion.




FREQUENCY DOMAIN SAMPLING: THE DISCRETE FOURIER
TRANSFORM

Before we introduce the DFT. we consider the sampling of the Fourier transform of
an aperiodic discrete-time sequence. Thus. we establish the relationship between
the sampled Fourier transform and the DFT.

5.1.1 Frequency-Domain Sampling and Reconstruction of
Discrete-Time Signals

We recall that aperiodic finite-energy signals have continuous spectra. Let us
consider such an aperiodic discrete-time signal x(n) with Founer transform

s
X(w)= ) x(me " (5.1.1)
Suppose that we sample X (w) periodically in frequency at a spacing of éw radians
between successive samples. Since X (w) is periodic with period 2. only samples
in the fundamental frequency range are necessary. For convenience, we take M
equidistant samples in the interval ( < w < 27 with spacing dw = 2x/N | as shown
in Fig. 5.1. First, we consider the selection of N. the number of samples in the

frequency domain.
If we evaluate (5.1.1) at w = 27k/N . we obtain

an = —j2nkn /N
X |k} = Z x(nye—i2mkm k=0.1..... N-=1 (5.1.2)

H=—xX
The summation in (5.1.2) ¢an be subdivided into an infinite number of summations,

where each sum contains N terms. Thus
N-1

" =1
il —jImkniN - 'N
p==N =l
|
“+ E x(mpe TR 4o
n=N
o INEN-T
= xinye 1IN N
= m=iN

If we change the index in the inner summation from »n to » — /N and interchange
the order of the summation. we obtain the result




2 M - ,
X (-ﬁ—‘-&) = Z { Z xin — zm} g iemhn/n (5.1.3)

ne=l} | f=—sc

fork=012..... N—1.
The signal

x,ln) = Z xn =IN) (5.1.4)
{==—ac

obtained by the periodic repetition of x(n) every N samples. is clearly periodic
with fundamental period N. Consequently, it can be expanded in a Fourier

Xiew)

1 L
~R ] kder  m JdwF 2

Figure 5.1 Freguency-domain sampling of the Fourier transform.

series as
Nl
Xy =Y el p =01, N -1 (5.1.5)
k=0
with Fourier coefficients
-[ N—1
e —jlmkniN . - _ ‘
o= ;x,{ﬂ}f j k=0,1,....N—1 (5.1.6)

Upon comparing (5.1.3) with (5.1.6), we conclude that

1 2 . .
o= —X (—i) k=0.1..... N =1 (5.1.1
N N
Therelore,
(n) = R X 2”.1- Jamkn/N =0, 1 N =1 5.1.8
.r;,nJ—N ) N e n=U1.....N— {5.1.8)




5.1.2 The Discrete Fourier Transform (DFT)

The development in the preceding section is concerned with the frequency-domain
sampling of an aperiodic finite-energy sequence x(n). In general, the equally
spaced frequency samples X (27k/N), k =0,1,..., N—1, do not uniquely represent
the original sequence x(n) when x(n) has infinite duration. Instead, the frequency
samples X(2nk/N), k=0, 1...., N — 1, correspond to a periodic sequence x,(n)
of period N, where x,(») is an aliased version of x(n), as indicated by the relation
in (5.1.4), that is,

xp(n)= Y x(n—IN) (5.1.15)

[=—

When the sequence x(n) has a finite duration of length L < N, then x,(n)
is simply a periodic repetition of x(n), where x,(n) over a single period is

given as
) _pam Q=n=L-1 16)
Xp(n) = 0. L<n<N-l (5.1.
Consequently, the frequency samples X(27k/N), k& = 0. 1..... N — 1. uniquely

represent the finite-duration sequence x{n). Since x(n) = x,(n) over a single p¢
riod (padded by N — L zeros). the original finite-duration sequence x{n) can be
obtained from the frequency samples {X (2k/N} by means of the formula (5.1.8)-

It is important to note that zero padding does not provide any additional
information about the spectrum X(w) of the sequence {x(n)}. The L equidis

tant samples of X(w) are sufficient to reconstruct X{w) using the reconstruction
formula (5.1.13). However. padding the sequence (x(n)] with N — L zeros and
computing an N-point DFT results in a “better display™ of the Fourier transform
X (w).

In summary. a finite-duration sequence x(n) of length L [i.e.. x(n) = 0 for
n <0 and n = L] has a Fourier transform

L=]
X(w) = Zx{nje‘f"”‘ 0<w=<2x (5.1.17)

n=0

where the upper and lower indices in the summation reflect the fact that x(n) =0

outside the range 0 < »n < L — 1. When we sample X(w) at equally spaced
frequencies &, = 27k/N. k = 0.1, 2..... N — 1. where N = L. the resultant
samples are
2k el .
X(k) = X (—_::_) = Zx[”}f-,r_m-.am
N cooon=y (5.1.18)
Xiky = Z_r(n yo —i=akniN A=0.1,2.....N—1
n =l

where for convenience. the upper index in the sum has been increased from L -1
to N -~ 1since xin)y=0forn = L.




The relation in (5.1.18) is a formula for transforming a sequence {x(n)} of
length L < N into a sequence of frequency samples (X (k}} of length N. Since
the frequency samples are obtained by evaluating the Fourier transform X (w)
at a set of N (equally spaced) discrete frequencies. the relation in (5.1.18) is
called the discrete Fourier rransform (DFT) of x(n). In turn. the relation given
by (5.1.10). which allows us to recover the sequence x(n) from the frequency
samples

| A=l _
x(n) = Z X (f)e! FmhniN n=0.1..... N —1 (5.1.19}
k=l
is called the inverse DFT (IDFT). Clearly, when x(n) has length L < N, the N-
point IDFT vields x(n) = 0 for L < n < M — 1. To summarize, the formulas for
the DFT and IDFT are

DFT
N1
X =3 xtme™ Nk =0,1,2.....N~1 (5.1.18)
n=0
IDFT
1 N=1 _
x(n) = }: X (kye/ 7N = 0,1,2,... N =1 (5.1.19)
k=l

5.1.3 The DFT as a Linear Transformation

The formulas for the DFT and IDFT given by (5.1.18) and (5.1.19) may be ex-
pressed as

N—1
Xk) =Y xmWy  k=01,.... N-1 (5.1.20)
=l
lh'—l
x(n}=.N-mew;*" n=01..N-1 (5.1.21)
k=(}

where, by definition,

Wy = e iP/¥ (5.1.22)

which is an Mth root of unity.

With these definitions, the N-point DFT may be expressed in matrix form as
XN = WNxN (51.24)

where Wy is the matrix of the linear transformation. We observe that Wy is a
symmetric matrix. If we assume that the inverse of Wy exists, then (5.1.24) can
be inverted by premultiplying both sides by W3'. Thus we obtain

xy = W5 Xy (5.1.25)




Relationship to the Fourier series coefficients of a periodic sequence.
A periodic sequence (x,(n)} with fundamental period N can be represented in a
Fourier series of the form
N-1
xp(n) = quﬂ""”“’ ~00<n <00 (5.1.29)
k=g

where the Fourier series coefficients are given by the expression
1 = 2
cx =F§mn}f kN k=01, N~ 1 (5.1.30)
If we compare (5.1.29) and (5.1.30) with (5.1.18) and (5.1.19), we observe that the
formula for the Fourier series coefficients has the form of a DFT. In fact, if we
define a sequence x(n) = x,(n), 0 < n < N — 1, the DFT of this sequence is simply

X(k) = Nc, {(5.1.31)

Furthermore, (5.1.29) has the form of an IDFT. Thus the N-point DFT provides
the exact line spectrum of a periodic sequence with fundamental period N.

Relationship to the Fourier transform of an aperiodic sequence. We
have already shown that if x(n) is an aperiodic finite energy sequence with Fourier
transform X (w), which is sampled at N equally spaced frequencies ey = 27k/N,
k=01,..., N —1, the spectral components

X (k) = X (@)|umert/n = i x(nye™ /TN =0,1,...,N-1 (5132
n=—00
are the DFT coefficients of the periodic sequence of period N, given by
xp{n) = i x(n—IN) (5.1.33)
l=—0c
Thus x,(n) is determined by aliasing {x(n)} over the interval 0 <n < N — 1. The
finite-duration sequence

A | xp(n), O0<n<N-1
X(n) = I 0, otherwise (5.1.34)




bears no resemblance to the original sequence {x(n)}, unless x(n) is of finite dura-
tion and length L < N, in which case

x(n) =x(n) O<n<N-1 (5.1.35)
Only in this case will the IDFT of {X (k)] yield the original sequence {x(n)].

Relationship to the z-transform. Let us consider a sequence x(n) having

the r-transform
oo

X(2)= Y x(mz™ (5.1.36)
n==0C

with a ROC that includes the unit circle. If X(z) is sampled at the N equally

spaced points on the unit circle z; = ¢/2*¥ 0, 1,2,..., N — 1, we obtain

X{k} EX(Z”::;']!H;;H k:ﬂ.]....,N—l
= u]
_ E £ ()TN (5.1.37)
fi=—00

The expression in (5.1.37) is identical to the Fourier transform X (w) evaluated at
the N equally spaced frequencies w; = 2ak/N. &k =0,1,... N — 1, which s the
topic treated in Section 5.1.1.

If the sequence x(n) has a finite duration of length N or less, the sequence can
be recovered from its N-point DFT. Hence its z-transform is uniquely determined
by its N-point DFT. Consequently, X (z) can be expressed as a function of the
DFT [X(k)} as follows

N1
X@ =Y x(mz™
n=ll
N=1[ ¢ Nzl _
X(z) = z |:— Z-‘f{fi)e&"hk”’m} "
n={ N k={)
ot v (5.1.38)
1 )
X(z) = ¥ Zx(k] Z (e/2kIN ,=1)"
kA =i}
1 — -N N-1
X(2) = z X (k)

N b 1= o/2nk/N -

When evaluated on the unit circle, (5.1.38) yields the Fourier transform of the
finite-duration sequence in terms of its DFT, in the form

1— e /N L2 X (k)

N Py 1 = g~ Jlw—2nk/N)

X(w) = (5.1.39)




Relationship to the Fourier series coefficients of a continuous-time
signal. Suppose that x,(r) is a continuous-time periodic signal with fundamental
period T, = 1/F. The signal can be expressed in a Fourier series

o
xa(1) = Z cpel2ThFo (5.1.40)

k=—aC

where {c.} are the Fourier coefficients. If we sample x,(r) at a uniform rate
F, = N/T, =1/T, we obtain the discrete-time sequence

o0 oc
: 2 el 1
x(n) = Xa(l?T) T Z ‘.ke;-nkﬁm'r = § : C‘(,;-n(n/,\

k=—x k=—oc

(5.1.41)
N-I| x .
(5 ] o
k=t [ ==
It is clear that (5.1.41) is in the form of an IDFT formula. where
X(k) = N Z CLan = /V(-" (5142)
I=-
and
G = Z Ch—IN (5.1.43)
==
Thus the {¢;} sequence is an aliased version of the sequence (¢ }.
PROPERTIESOFDFT: . e ..
Property Time Domain  Frequency Domain
Notation x(n). v(n) X<k}, Y(k)
Periodicity x{n) =x(n+N) Xk)=Xk+N)
Linearity ajxy(n) +ayxz(n)y X1 (k) +a:Xa(k)
Time reversal (N —n) XN -K)
Circular time shift x((n = Ny X (kyeizmtiin
Circular frequency shift x(n)eiTrinN Xtk — D)
Complex conjugate x"(n) X' (N —=k)
Circular convolution x:(m) (N) x3(n) X1 (k) X3 (k)
Circular correlation x{n) @ y*(—n) X (k)Y (k)
.. 1
Multiplication of two sequences x1(n)xa(n) E'—Xl{k) @ X2 (k)
M=1 N=]
1
Parseval's theorem x(m)y*(n — XY*(k)
; e g )

LINEAR FILTERING METHODS BASED ON THE DFT

Since the D F T provides a discrete frequency representation o f a finite-duration Sequence in
the frequency domain, it is interesting to exp lore its use as a computational tool for linear system
analysis and, especially, for linear filtering. We have already established that a system with
frequency response H { w ) y w hen excited with an input signal that has a spectrum possesses an
output spectrum.

The output sequence y(n) is determined from its spectrum via the inverse Fourier transform.
Computationally, the problem with this frequency domain approach is that are functions o f the




continuous variable. As a consequence, the computations cannot be done on a digital computer, since
the computer can only store and perform computations on quantities at discrete frequencies.
On the other hand, the DFT does lend itself to computation on a digital computer. In the discussion
that follows, we describe how the DFT can be used to perform linear filtering in the frequency
domain. In particular, we present a computational procedure that serves as an alternative to time-
domain convolution.

In fact, the frequency-domain approach based on the DFT, is computationally m ore efficient
than time-domain convolution due to the existence of efficient algorithms for computing the DFT .
These algorithms, which are described in Chapter 6, are collectively called fast Fourier transform
(FFT) algorithms.

5.3.1 Use of the DFT in Linear Filtering

In the preceding section it was demonstrated that the product of two DFTs is
equivalent to the circular convolution of the corresponding time-domain sequences.
Unfortunately, circular convolution is of no use to us if our objective is to deter-
mine the output of a linear filter to a given input sequence. In this case we seek
a frequency-domain methodology equivalent to linear convolution.

Suppose that we have a finite-duration sequence x(n) of length L which
excites an FIR filter of length M. Without loss of generality, let

x(n) =0, n<Qandn>L
hiny=0, n<Oandn>M

where h(n) is the impulse response of the FIR filter.
The output sequence y(n) of the FIR filter can be expressed in the time
domain as the convolution of x(n) and k(n), that is

M=1
y(r) =" hik)x(n — k) (5.3.1)
k=0

Since h(n) and x(n) are finite-duration sequences, their convolution is also finite
in duration. In fact, the duration of y(n) is L + M — 1.
The frequency-domain equivalent to (5.3.1) is

Y () = X (w)H (@) (5.3.2)




If the sequence y(n) is to be represented uniquely in the frequency domain by
samples of its spectrum Y (w) at a set of discrete frequencies, the number of distinct
samples must equal or exceed L+ M —1. Therefore, a DFT of size N > L+ M -1,
is required to represent (y(n)} in the frequency domain.

Now if

Y(k) = Y(0)|w=2xk/N k=01..,.N-1
= X(w)H (0)|we2ri/N k=0,1,...,. N =1
then
Y(k) = X(k)H (k) k=01,.... N-1 (5.3.3)

where {X(k)} and {H(k)} are the N-point DFTs of the corresponding sequences
x(n) and h(n), respectively. Since the sequences x(n) and h(n) have a duration
less than N, we simply pad these sequences with zeros to increase their length to
N. This increase in the size of the sequences does not alter their spectra X (w) and
H (w), which are continuous spectra, since the sequences are aperiodic. However,
by sampling their spectra at N equally spaced points in frequency (computing the
N-point DFTs), we have increased the number of samples that represent these
sequences in the frequency domain beyond the minimum number (L or M, re-

spectively).

Since the N = L + M — 1-point DFT of the output sequence y(n) is sufficient
to represent y(n) in the frequency domain. it follows that the multiplication of the
N-point DFTs X (k) and H(k), according to (5.3.3), followed by the computation
of the N-point IDFT, must yield the sequence {y(n)}. In turn, this implies that
the N-point circular convolution of x(n) with h(n) must be equivalent to the linear
convolution of x(n) with h(n). In other words, by increasing the length of the
sequences x(n) and k(n) to N points (by appending zeros), and then circularly
convolving the resulting sequences, we obtain the same result as would have been
obtained with linear convolution. Thus with zero padding, the DFT can be used
to perform linear filtering.




FAST FOURIER TRANSFORM
EFFICIENT COMPUTATION OF DFT:

In this section we represent several methods for computing dft efficiently. In view of the
importance of the DFT in various digital signal processing applications such as linear filtering,
correlation analysis and spectrum analysis, its efficient computation is a topic that has received
considerably attention by many mathematicians, engineers and scientists. Basically the computation
is done using the formula method.

N-1
X(ky=) xmWf 0<k=<N-1
n=0

where
WN - e-iln/N

In general, the data sequence x(n) is also assumed to be complex valued.
Similarly, the IDFT becomes

1 N-1 -
x(n):NkZ‘;X(k)WN O<n<N-1

We observe that for each value of k, direct computation of X (k) involves
N complex multiplications (4N real multiplications) and N — 1 complex additions
(4N —2 real additions). Consequently, to compute all N values of the DFT requires
N? complex multiplications and N? — N complex additions.

6.1.1 Direct Computation of the DFT

For a complex-valued sequence x(n) of N points, the DFT may be expressed as

= 2k . 2nk
Xgk) = ; [.tx(n)cos J;’n + x;(n) sin N"] (6.1.6)
N1
Xik) = — ;D I:IR(H) sin 2nkn — xj({n)cos 21;:"] (6.1.7)

The direct computation of (6.1.6) and (6.1.7) requires:

L 2N? evaluations of trigonometric functions.
2. 4N? real multiplications.

3. 4N(¥ — 1) real additions.
4. A number of indexing and addressing operations.

These operations are typical of DFT computational algorithms. The operations
in items 2 and 3 result in the DFT values Xg(k) and X,;(k). The indexing and
addressing operations are necessary to fetch the data x(n), 0 < n < N —1, and
the phase factors and to store the results. The variety of DFT algorithms optimize
each of these computational processes in a different way.

Divide-and-Conquer Approach to Computation of the DFT

The development of computationally efficient algorithms for the DFT is made possible if we
adopt a divide-and-conquer approach. This approach is based on the decomposition of an N-point
DFT into successively smaller DFT. This basic approach leads to a family o f computationally
efficient algorithm s know n collectively as FFT algorithms.




T o illustrate the basic notions, let us consider the computation of an N point DFT , where N can be
factored as a product of two integers, that is, N =L M

Algorithm 1

1. Store the signal column-wise.

2. Compute the M-point DFT of each row.

3. Multiply the resulting array by the phase factors W:j".
4. Compute the L-point DFT of each column

5. Read the resulting array row-wise.

Algorithm 2

1. Store the signal row-wise.

2. Compute the L-point DFT at each column.

3. Muttiply the resulting array by the factors W5™.
4. Compute the M-point DFT of each row.

5. Read the resulting array column-wise.

6.1.3 Radix-2 FFT Algorithms

Let us consider the computation of the N = 2" point DFT by the divide-
and-conquer approach specified by (6.1.16) through (6.1.18). We select M = N/2
and L = 2. This selection results in a split of the N-point data sequence into two
N /2-point data sequences fi(n) and f2(n), corresponding to the even-numbered
and odd-numbered samples of x(n), respectively, that is,

filn) = x(2n)
N (6.1.23)

fa(n) = x(2n 4+ 1), "=0'1""'5-1

Thus fi(n) and f;(n) are obtained by decimating x(n) by a factor of 2, and hence
the resulting FFT algorithm is called a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFTs of the deci-
mated sequences as follows:

N-1
Xh) =Y x(mWk  k=01,...,N-1
n=()




= ) xmWE+ Y x(mWy (6.1.24)

n eveén n odd

(N21-1 (N1 '
= Y zemwF+ Y x@m+pwEtt

m=0) m=0

But W2 = Wyp,. With this substitution, (6.1.24) can be expressed as

W1 R
_ ko kmt
Xy = Y AmWEL+WhL Y Hmwih (6.1.25)
s =0

= Fi(k) + Wi Fa(k) k=0,1,....N=1

where Fi(k) and F>(k) are the N /2-point DFTs of the sequences fi(m) and f(m},
resPectively.

Since Fi(k) and F3(k) are periodic, with period ¥ /2, we have Fi(k + N/2) =
Fi(k) and Fa(k + N/2) = Fy(k). In addition, the factor W:f“""" = —W,. Hence
(6.1.25) can be expressed as

Xy = Fitk)+ WiFR(k)  k=0,1,..., % - (6.1,26)
x(k+g—) = Fitk)— WhFRaky  k=0.1,.... % -1 (6.1.27)
To be consistent with our previous notation, we may define
Gk} = Fi(k) k=0.1....,%—1
Gak) = WER(k) k=01,..., ..2‘“': -1

Then the DFT X (k) may be expressed as

X(k) = Gi(k)+ Gatky  k=0,1,...,
N (6.1.28)
X(k+E)=G|(i‘)—Gz(‘C} k=01....,




N{4-point sequences

N
vnn) = fi(2n) n=0,1,“..?—l
N (6.1.29)
via(n) = fi(2n+1) "=0'1""'I_1
and f>(n) would yield
N
va(n) = f2(2n) ﬂ='|]-1.-...?-1
(6.1.30)
N

ve(n) = f2(2n +1) n=U,1.....-4—~—l

By computing N/4-point DFTs, we would obtain the N/2-point DFTs F(k) and
F>(k) from the relations

N
Fi(k) = Vuk) +Wyp Vo) k=01,....2 -1
(6.1.31)
N R N
Flk+ ) =Vak - WypVuky k=01,.... 2 -1
" N
Fa(k) = V21{k)+W~ﬁVn(k) k=0,1|...,I—1
N N (6.1.32)
k
where the {V;;(k)} are the N/4-point DFTs of the sequences {v;;{n}}.
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Figure 65 Three stages in the computation of an N = E-point DFT.
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Figure 6.6 Eight-point decimation-in-time FFT algorithm.
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Another important radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, is obtained by using the divide-and-conquer approach described in Sec-
tion 6.1.2 with the choice of M = 2 and L = N/2. This choice of parameters
implies a column-wise storage of the input data sequence. To derive the algo-
rithm, we begin by splitting the DFT formula into two summations, one of which
involves the sum over the first N/2 data points and the second sum involves the
last N/2 data points. Thus we obtain

(N/2)-1 N-1
Xk = 3 xmWE+ 3 xmwh
aw( n=N/2
N/2)-1 . i (N1 % k (6.1.33)
= ; x(n)“’N + WN ; X (n -+ 3) WNR

Since W:,N 2 = (=1)*, the expression (6.1.33) can be rewritten as

(N/2)-1 N
X (k) = g [x(n) + (—1)*x (n + -2—)] Wi (6.1.34)




Data Data
decimation ] decimation 2

Memory address Memory
(decimal} (binary)

] Qo0 x(0) - x(0} - x(0)

1 001 x1) x(2) >< x(4)

2 010 x(2) x4) x(2)

1

3 011 () x(6) x(6)

4 100 x(4) x(1) x(1)

5 101 x(5) x(3) >< x(5)

(3] 110 x6) x(3) x(3)

7 1114 x(7) x(7) -t (7}
Matural Bil-reversed
order order

(a)

Now, let us split (decimate) X (k) into the even- and odd-numbered samples. Thus
we obtain

(N/2)=1 N . N
X(2k) = ): [x(rt)+x(n+-2-)]wm k:ﬂ.l,...,—z——r] (6.1.35)

n=0
and
NR)-1 N N
X(Zk+1)= Z l[x(n)-x(n-f--z-)]ﬁ-’;]wﬁh k=0,1,...,?-1
ne=l(
(6.1.36)
where we have used the fact that W} = Wy ;.
If we define the N/2-point sequences g;(n) and gz(n) as
N
g1(n) = x(n) +x (n + E)
N N (6.1.37)
g2(n) = [x(n)—x (H—?)] Wi n=012..5-1
then
(N/2)-1
X2k = ) simWyy
- (6.1.38)
(N2)=1

X+ = Y gamWy,

n=[l




-

We observe from Fig. 6.11, that the input data x(n) occurs in natural order,
but the output DFT occurs in bit-reversed order. We also note that the computa-
tions are performed in place. However, it is possible to reconfigure the decimation-
in-frequency algorithm so that the input sequence occurs in bit-reversed order
while the output DFT occurs in normal order. Furthermore, if we abandon the
requirement that the computations be done in place, it is also possible to have
both the input data and the output DFT in normal order.

x(0) » - X(0)
x(1) » * X(4)
x(2) o * X(2)
x(3) - X(6)
Wi
x(4) o 4 = - » - e X)
x5) o 4 — L —p '><: We o X(5)
x(7) o v v e X7




6.1.4 Radix-4 FFT Algorithms

When the number of data points N in the DFT is a power of 4 (i.e., N = 4"), we
can, of course, always use a radix-2 algorithm for the computation. However. for
this case, it is more efficient computationally to employ a radix-4 FFT algorithm.

Let us begin by describing a radix-4 decimation-in-time FFT algorithm, which
is obtained by selecting L =4 and M = N/4 in the divide-and-conquer approach
described in Section 6.1.2. For this choice of L and M, we have !, p =0, 1, 2, 3: m,
g=01,..., N/A—=1;n=4m+1 and k = (N/4)p + g. Thus we split or decimate
the N-point input sequence into four subsequences, x(4n), x(4n + 1), x(4n + 2),
x@n+3).n=01,.... N/ - 1.

By applying (6.1.15) we obtain

3
X(pgy=3_ [w,’;!ru.q)] wr  p=0.1.23 (6.1.39)

=0
where F(l.qg) is given by (6.1.16). that is,
(NA-t 1=0,1,2.3,

= ny
F.g) = Z;' UmWil oo N (6.1.40)
m= 4
and
x(I.m) = x(4m + 1) (6.1.41)
N
X(p.g)=X (zp +q) (6.1.42)

Thus, the four N/4-point DFTs obtained from (6.1.40) are combined according
to (6.1.39) to vield the N-point DFT. The expression in (6.1.39) for combining
the N/4-point DFTs defines a radix-4 decimation-in-time butterfly, which can be
expressed in matrix form as

11 1 Wy F(0,¢)

X(0.g) 1 y
x(l.q) e Wy F(l.q) (6.1.43)
XQ2.q) 1 -1 1 -1||w¥F@.q w
3. & e %
X(3.q) 1 g 1 -j W:,"F(3. @)
Wi
wi (4]

St




x(0)

0

x(1)

x(2) )

x(3)

x(4) 0

x(5) \ /

<) XKL

< K R <0

) <7 XX NS

* T ‘\
x(10) / \v
x(11) 0
x(12)
x(13)
x(14)
x15)

MNid=1 N
X (4k) = Z [J‘{lr}+.1' (n+~z)

Nid=1 N
X4k +1) = Z {x[n] - jx (u + E)
NY INNT ke
_.x_(n 1 3) + jx (n - TH Wi WA,

Nid=1 N
X4k +2) = Z [m] -x (n + T)

n==(l
N
+x (n+%.r_) —x(n+T)] Wff“’;f}q
Njd=1 N
X(4k +3) = ; x(n) + jx (n + ?)
N

_ IN
—x|n+ E) - jx (ﬂ + T)] Wﬁ“w;%

X(0)
X(4)
X(8B)
X(12)
X(1)
X(5)
X(9)
X(13)
X(2)
X(6)
X(10)
X(14)
X(@3)
X(7)
X(11)

X(15)




6.1.5 Split-Radix FFT Algorithms

An inspection of the radix-2 decimation-in-frequency flowgraph shown in Fig. 6.11
indicates that the even-numbered points of the DFT can be computed indepen-
dently of the odd-numbered points. This suggests the possibility of using different
computational methods for independent parts of the algorithm with the objective
of reducing the number of computations. The split-radix FFT (SRFFT) algorithms
exploit this idea by using both a radix-2 and a radix-4 decomposition in the same
FFT algorithm.

We illustrate this approach with a decimation-in-frequency SRFFT algorithm
due to Duhamel (1986). First, we recall that in the radix-2 dectimation-in-frequency
FFT algorithm, the even-numbered samples of the N-point DFT are given as

-—

NR-1 N N N
X(2k) = ,Z:(, [x(n)+x(n+i)] Win k=0,1,.... ?—1 (6.1.55)
Note that these DFT points can be obtained from an N /2-point DFT without any
additional multiplications. Consequently, a radix-2 suffices for this computation.

The odd-numbered samples {X {2k 4 1)) of the DFT require the premultipli-
cation of the input sequence with the twiddle factors W}. For these samples a
radix-4 decomposition produces some computational efficiency because the four-
point DFT has the largest multiplication-free butterfly. Indeed, it can be shown
that using a radix greater than 4, does not result in a significant reduction in com-
putational complexity.

If we use a radix-4 decimation-in-frequency FFT algorithm for the odd-
numbered samples of the N-point DFT, we obtain the following N /4-point DFTs:

N/a-1
X@k+1) = Z ([x(n) = x(n + N/2)] (6.1.56)
n=(
— jlx(n + N/4) = x(n + 3N /&)W WY,
Nd-1
X(@k+3)= Y {[x(n) —x(n+ N/2)] (6.1.57)
n=0

+ j[x(n + N/4) = x(n + 3N/A)}WR WX,

Thus the N-point DFT is decomposed into one N /2-point DFT without additional
twiddle factors and two N /4-point DFTs with twiddle factors. The N-point DFT
is obtained by successive use of these decompositions up to the last stage. Thus
we obtain a decimation-in-frequency SRFFT algorithm.

Figure 6.15 shows the flow graph for an in-place 32-point decimation-
in-frequency SRFFT algorithm. At stage A of the computation for N = 32, the
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An additional factor of 2 savings in storage of twiddle factors can be obtained by introducing
a 90° phase offset at the mid point of each twiddle array , which can be removed if necessary at the
ouput of the SRFFT computation. The incorporation of this improvement into the SRFFT results in

an other algorithm also due to price called the PFFT algorithm.

Implementation of FFT Algorithms

Now that w e has described the basic radix-2 and radix -4 F FT algorithm s, let us consider

some of the implementation issues. Our remarks apply directly to
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radix-2 algorithms, although similar comments may be made about radix-4 and
higher-radix algorithms.

Basically, the radix-2 FFT algorithm consists of taking two data points at a
time from memory, performing the butterfly computations and returning the re-
sulting numbers to memory. This procedure is repeated many times ((N log, N)/2
times) in the computation of an N-point DFT.

The butterfty computations require the twiddle factors {W},) at various stages
in either natural or bit-reversed order. In an efficient implementation of the algo-
rithm, the phase factors are computed once and stored in a table, either in normal
order or in bit-reversed order, depending on the specific implementation of the
algorithm.

Memeory requirement is another factor that must be considered. If the com-
putations are performed in place, the number of memory locations required is 2N
since the numbers are complex. However, we can instead double the memory to
4N, thus simplifying the indexing and control operations in the FFT algorithms. In
this case we simply alternate in the use of the two sets of memory locations from
one stage of the FFT algorithm to the other. Doubling of the memory also allows
us to have both the input sequence and the output sequence in normal order.

Finally. we note that the emphasis in our discussion of FFT algorithms was
on radix-2, radix-4. and split-radix algorithms. These are by far the most widely
used in practice. When the number of data points is not a powerof 2 or 4. it is a
simple matter to pad the sequence x(n) with zeros such that N =2" or N = 4".

The measure of complexity for FFT algorithms that we have emphasized
is the required number of arithmetic operations (muitiplications and additions).
Although this is a2 very important benchmark for computational complexity, there
are other issues to be considered in practical implementation of FFT algorithms.
These include the architecture of the processor, the available instruction set. the
data structures for storing twiddle factors, and other considerations.

For general-purpose computers, where the cost of the numerical operations
dominate, radix-2. radix-4, and split-radix FFT algorithms are good candidates.
However. in the case of special-purpose digital signal processors, featuring single-
cycle multiply-and-accumulate operation, bit-reversed addressing, and a high de-
gree of instruction parallelism. the structural regularity of the algorithm is equally
important as arithmetic complexity. Hence for DSP processors, radix-2 or radix-
4 decimation-in-frequency FFT algorithms are preferable in terms of speed and
accuracy. The irregular structure of the SRFFT may render it less suitable for
implementation on digital signal processors. Structural regularity is also important
in the implementation of FFT algorithms on vector processors, multiprocessors,
and in VLSI. Interprocessor communication is an important consideration in such
implementations on parallel processors.

In conclusion, we have presented several important considerations in the
implementation of FFT algorithms. Advances in digital signal processing technol-
ogy, in hardware and software, will continue to influence the choice among FFT
algorithms for various practical applications.




APPLICATIONS OF FFT ALGORITHMS

The FFT algorithms described in the preceding section find application in a variety
of areas, including linear filtering, correlation, and spectrum analysis. Basically,
the FFT algorithm is used as an efficient means to compute the DFT and the IDFT.
In this section we consider the use of the FFT algorithm in linear filtering
and in the computation of the crosscorrelation of two sequences. The use of the
FFT in spectrum analysis is considered in Chapter 12. In addition we illustrate
how to enhance the efficiency of the FFT algorithm by forming complex-valued
sequences from real-valued sequences prior to the computation of the DFT.

6.2.1 Efficient Computation of the DFT of Two Real
Sequences

The FFT algorithm is designed to perform complex multiplications and additions,
even though the input data may be real valued. The basic reason for this situation is

Suppose that x(n) and xz(n) are two real-valued sequences of length N, and
let x(n) be a complex-valued sequence defined as

x(m=x1m)+ jx:n) O=n=N-1 (6.2.1)

The DFT operation is linear and hence the DFT of x(n) can be expressed as
X(k) = X (k) + jXo (k) (6.2.2)
The sequences x;(n) and x2(n) can be expressed in terms of x(n) as follows:

x(u} + x*(n)

xn) = — (6.2.3)
xa(n) = x(n) _'I.\' {n) (624)‘
2)
Hence the DFTs of xi(n) and x»(n) are
Xitk) = %{DFT[;("]] + DFT[x"(n)]) (6.2.5)
1

Xalk) = -Z-E{IJ'FT[X(H)] - DFT[x* ()]} (6.2.6)

Recall that the DFT of x*(n) is X*(N — k). Therefore,

1

Xi(k) = E[X{k} + X*(N = k)] (6.2.7)
Xa(k) = jlz[X{k}—X‘[N—k)] (6.2.8)

6.2.2 Efficient Computation of the DFT of a 2N-Point
Real Sequence

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate
how to obtain the 2N-point DFT of g(n) from computation of one N-point DFT
involving complex-valued data. First, we define

x1(n) = g(2n)

(6.2.9)
x2(n) = g(2n + 1)




Let x(n) be the N-point complex-valued sequence
xn) = xy(n) + jxz(n) (6.2.10;

From the results of the preceding section, we have

1
X (k) = 5[;((;.-; + XN - k)]

1 (6.2.11)
Xa(k) = Q—j[xm — X" (N — k)]

Finally. we must express the 2N -point DFT in terms of the two N-point DFTs,
Xi(ky and X»(k). To accomplish this, we proceed as in the decimation-in-time FFT
algorithm, namely,

N1 N=1
Gk = ) g@nWH + ) e@n+ Dt
n=li n={}

N1 w=1
= Z.n (MW + Wi, Z: x2(n) Wk

n=il n=Il}
Consequently,
Gky = Xy (k) + WINX2(k) =01 N-1
G+ N) = Xith) - WINX2k)  k=0.1,....N=1

Thus we have computed the DFT of a 2N-point real sequence (rom one N-point
DFT and some additional computation as indicated by (6.2.11) and (6.2.12).

(6.2.12)

6.2.3 Use of the FFT Algorithm in Linear Filtering and
Carrelation

An important application of the FFT algorithm is in FIR hnear filtering of long
data sequences. In Chapter 5 we described two methods, the overlap-add and the
overlap-save methods for filtering a long data sequence with an FIR filter, based
on the use of the DFT. In this section we consider the use of these two methods
in conjunction with the FFT algorithm for computing the DFT and the IDFT.

Let h(n), 0 <a < M =1, be the unit sample response of the FIR filter and let
x(n) denote the input data sequence. The block size of the FFT algorithm is N,
where N = L + M -1 and L is the number of new data samples being processed
by the filter. We assume that for any given value of M, the number L of data
samples is selected so that N is a power of 2. For purposes of this discussion, we
consider only radix-2 FFT algorithms.

The N-point DFT of A(n), which is padded by L —1 zeros, is denoted as H (k).
This computation is performed once via the FFT and the resulting N complex
numbers are stored. To be specific we assume that the decimation-in-frequency




FFT algorithm is used to compute H(k). This yields H(k} in bit-reversed order,
which is the way it is stored in memory.

In the overlap-save method. the first M — 1 data points of each data block are
the last M — 1 data points of the previous data block. Each data block contains L
new data points, such that N = L + M — 1. The N-point DFT of each data block
is performed by the FFT algorithm. If the decimation-in-frequency algorithm is
employed, the input data block requires no shuffling and the values of the DFT
occur in bit-reversed order. Since this is exactly the order of H (k). we can multiply
the DFT of the data, say X, (k}, with H(k) and thus the result

Yulk) = H) X, (k)
1s also in bit-reversed order.

The inverse DFT (IDFT) can be computed by use of an FFT algorithm that
takes the input in bit-reversed order and produces an output in normal order.
Thus there is no need to shuffie any block of data either in computing the DFT
or the IDFT,

If the overlap-add method is used to perform the linear filtering, the compu-
tational method using the FFT algorithm is basically the same. The only difference
is that the N-point data blocks consist of L new data points and M — 1 additional
zeros. After the IDFT is computed for each data block, the N-point filtered blocks
are overlapped as indicated in Section 5.3.2. and the M —1 overlapping data points
between successive output records are added together.

6.3.1 The Goertzel Algorithm
The Goertzel algorithm exploits the periodicity of the phase factors (W%} and

allows us to express the computation of the DFT as a linear filtering operation.
Since W;"‘H = 1, we can multiply the DFT by this factor. Thus

N—1 L
Xty = WS xemwhm =3 cemyw N (6.3.1)
m=(l =)

We note that (6.3.1) is in the form of a convolution. Indeed. if we define the
sequence yp(n) as

M-I
ye(n) = E x(m)wgEnm (6.3.2)

m=0
then it is clear that yx(n) 15 the convolution of the fimte-duration input sequence
x(n) of length & with a filter that has an impulse response
he(n) = W u(n) (6.3.3)

The output of this filter at n = N yields the value of the DFT at the frequency
wy = 2xk/N. That is,

X“::' = }'i["}in-ﬂ {634}
as can be verified by comparing (6.3.1) with (6.3.2).
The filter with impulse response he(n) has the system function

1

R — 6.3.5)
1— Wyl ¢

H(z) =




Thas flter has a pole on the unit circle at the frequency wy = 2rk /N. Thus, the
entire DFT can be computed by passing the block of input data into a paral-
lel bank of NV single-pole filters (resonators), where each filter has a pole at the
corresponding frequency of the DFT.

Instead of performing the computation of the DFT as in (6.3.2), via convolu-
tion. we can use the difference equation corresponding to the filter given by (6.3.5)
to compute yi(n) recursively. Thus we have

weln) = Wﬁln (n—1)+ x(n) vi{(=1)=0 (6.3.0)

The desired output is X(k) = w(N), fork =0, 1,...,N — 1. To perform this
computation, we can compute once and store the phase factors Wy*.

The complex multiplications and additions inherent in (6.3.6) can be avoided
by combining the pairs of resonators possessing complex-conjugate poles. This
leads to two-pole fikters with system functions of the form

I- W};._‘:-'
1 - 2cos(2rk /Nyt 4 2-2
6.3.2 The Chirp-z Transform Algorithm

Hiz) = 6.3.7)

The DFT of an N-point data sequence x(n) has been viewed as the z-transform
of x(n) evaluated at N equally spaced points on the unit circle. It has also been
viewed as N equally spaced sampiles of the Fourier transform of the data sequence
x{mn). In this section we consider the evaluation of X' (z) on other contours in the
z-plane, including the unit circle.

Suppose that we wish to compute the values of the z-transform of x(n) at a
set of points {z;). Then,

W1

X =Y x(mz" k=01,....L—1 (6.3.10)
n=0

For example, if the contour is a circle of radius r and the z, are N equally spaced
points, then
2y = resinkniN k=0,1,2,...,N =1
Nl . . (6.3.11)
X(z:) = E{x{n}r_"]e_-ﬂ”"“ k=0.1.2..... N -1
n=(0
In this case the FFT algorithm can be applied on the modified sequence x(n)r=",
More generally, suppose that the points z; in the z-plane fall on an arc which
begins at some point
20 = roe’™
and spirals either in toward the origin or out away from the origin such that the
points {z;} are defined as
2 = roe!®(Rge!™Y  k=0,1,....,L-1 (6.3.12)
When points {z;} in (6.3.12) are substituted into the expression for the z-
transform, we obtain
N-1

X(z) = Y x(mz"
= (6.3.13)

N-1

= Z x(n)Mroe/®) "y

i)




where. by definition.

V = Rye!® {6.3.14)
We can express (6.3.13) in the form of a convolution, by noting that
nk = 1[n* + k? — (k — n)?] (6.3.15)
Substitution of (6.3.15) into (6.3.13) yields
N—1
X(z) = VTR Y [x(ndroelt)y v Ay honi (6.3.16)
n={
Let us define a new sequence g(n) as
g(n) = x(my(roe’®)y ="V =" 7 (6.3.17)
Then (6.3.16) can be expressed as
N=1
X(z) = VEA Y gmv s (6.3.18)
a={

The summation in (6.3.18) can be interpreted as the convolution of the sequence
g(n) with the impulse response h(n) of a filter, where

h(n) = V™72 (6.3.19)
Consequently, (6.3.18) may be expressed as
X(ze) = VFRyk)

(6.3.20)
=20 01—
hik)
where y(k} is the output of the filter
=1
y[k}:Eg{n}h{k—n} k=0.1,....L-1 (6.3.21)
r=0)

QUANTIZATION EFFECTS IN THE COMPUTATION OF THE DFT*

As we have observed in our previous discussions, the DFT plays an important role
in many digital signal processing applications, including FIR filtering, the compu-
tation of the correlation between signals, and spectral analysis. For this reason
it is important for us to know the effect of quantization errors in its computa-
tion. In particular, we shall consider the effect of round-off errors due to the
multiplications performed in the DFT with fixed-point arithmetic.




6.4.1 Quantization Errors in the Direct Computation of
the DFT

Given a finite-duration sequence {x{m)}, 0 = n < N — L, the DFT of {x(n)} is

defined as
w1

Xth)= Y xmWy'  k=01...N~1 (6.4.1)

n=ll

where Wy = ¢ /"%, We assume that in general. {x(n)] is a complex-valued se-
quence. We also assume that the real and imaginary components of {x(n)] and
{Wir} are represented by b bits. Consequently, the computation of the product
x{mW}" requires four real multiplications. Each real multiplication is rounded
from 2k bits to b bits, and hence there are four gquantization errors for cach
complex-valued multiplication.

In the direct computation of the DFT, there are N complex-valued multiplica-
tions for each point in the DFT. Therefore, the total number of real multiplications
in the computation of a single point in the DFT is 4N. Consequently. there are
4N quantization errors.

Let us evaluate the variance of the quantization errors in a fixed-point com-
putation of the DFT. First. we make the following assumptions about the statistical
properties of the quantization errors.

1. The quantization errors due to rounding are uniformly distributed random
variables in the range (—A /2, A/2) where A = 2=k,

2. The 4N gquantization errors are mutually uncorrelated.
3. The 4N quantization errors are uncorrelated with the sequence {x(n)}.

Since each of the quantization errors has a variance

-&2 2-—:}!
== 6.4.2
T T (42
the variance of the quantization errors from the 4 multiplications is
o] = 4Nd}
_N e (6.4.3)

3




as
) F=2ib-vil
o, = 5 (6.4.4)
This expression implies that every fourfold increase in the size N of the DFT
requires an additional bit in computational precision to offset the additional quan-
tization errors.
To prevent overflow, the input sequence to the DFT requires scaling. Clearly,
an upper bound on |X (k)| is
=1
X = Y x(m)] (6.4.5)
n=(l
Ii the dynamic range in addition is (=1, 1), then | X (k)| < 1 requires that

N=1
E|xl’_u}| < | (6.4.6)
n=i)
I |x(n)| is initially scaled such that |x(n)| < 1 for all n, then each point in the
sequence can be divided by N 1o ensure thai (6.4.6) is satisfied.

The scaling implied by (6.4.6) is extremely severe. For example, suppose
that the signal sequence {x(n)} is white and. after scaling. each value |x(n)j of the
sequence is uniformly distributed in the range (—1/N. 1/N}. Then the variance of
the signal sequence is

al= 2/N) = _1_ (6.4.7)
: 12 aN-
and the variance of the output DFT coefficients |X (k)| is
a; = Na?
1 (6.4.8)
T 3N
Thus the signal-to-noise power ratio is
2 2
o 2 (6.4.9)
o* M=

9

We observe that the scaling is responsible for reducing the SNR by N and

the combination of scaling and quantization errors result in a total reduction that

is proportional to N°. Hence scaling the input sequence {x(n)} to satisfy (6.4.6)
imposes a severe penalty on the signal-to-noise ratio in the DFT.




UNIT-2&3
STRUCTURES OF FIR AND IIR SYSTEMS

TRUCTURES FOR THE REALIZATION OF DISCRETE-TIME SYSTEM
The major factors that influence our choice o f a specific realization are computational complexity,
memory requirements, and finite-word-length effects in the computations.

STRUCTURES FOR FIR SYSTEMS
In general, an FIR system is described by the difference equation

M=1
¥n) =Y bex(n — k) (72.1)
=0
or, equivalently, by the system function
M—1
Hizy=Y bzt (7.2.2)
k=0
Furthermore, the unit sample response of the FIR system is identical to the coef-

ficients {&}, that is,

hin) = b,. O0<n<M-1
0, otherwise

Direct-Form Structure

The direct form realization follows immediately from the non recursive difference equation given
below

M-
yim) =Y h(k)x(n — k)
k=0

xin} - R I Pl bl =
1 h(0) h(l) h(2) 1 A(3) WM=12) h(M-1)
O—CO—0~C O

Cascade-Form Structures

The cascaded realization follows naturally system function given by equation. It is simple matter to
factor H(z) into second order FIR system so that

K
H@) =[]H®k)
k=]
where

Hk[Z] =bkﬂ+bt‘]z‘+1 +bﬂz-2 k: 1|| 2+---|K
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Frequency-Sampling Structures

The frequency-sampling realization is an alternative structure for an FIR filter in which the
parameters that characterize the filter are the values o f the desired frequency response instead of the
impulse response h(n). To derive the frequency sampling structure, we specify the desired frequency
response at a set o f equally spaced frequencies, namely

2 M-1
wk=-§{1.+a) k=U‘1.....——i—- M odd
k=ﬂ.1*.*.,*ﬂ§--] M even

o =0 or j
The frequency response of the system is given by
M—1
Hw) = Z h(n)e= o

n={)




M
M-=1 ,
= Z h(n)P-JZH{t+aJu;H k=01... M—1
=l
! = [ 2 (k+an/M
h M ’ i = o Ay oaow s g —
() Mgﬂ{k-i-a)e n=01.... M-1
M-1
H(z) = Zh(n)z "
r=l(]
M=1 1 M-1 ‘
= Z o Z H{k +a]£Jhit+u}n.ru:| o
n=0) k=0
= 1 M
H(z) = E Hk+a)| — Z{EJEHIE+BUMZ-1}M
k=0 M &~
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Lattice Structure

In this section w e introduce another F IR filter structure, called the lattice filter or

Lattice realization. Lattice filters are used extensively in digital speech processing

And in the implementation of adaptive filters. Let us begin the development by considering a
sequence of FIR filters with system functions

Ho(z) = An(2) m=012...M-1 (7.217)

pilmM — | UM

where, by definition, A, (z) is the polynomial
An(D) =14 ank)z™  m=z1 (7.2.18)
k=1

and Ap(z) = 1. The unit sample response of the mth filter is 4, (0) = 1 and
hm(k) = am{k), k=1,2,....,m. The subscript m on the polynomial A, {:) denotes
the degree of the polynomial. For mathematical convenience, we define «,, (0} = 1.

If {x{m)} is the input sequence to the filter A,.(z) and {¥(n)} is the output

sequence, we have
m

yin) = x(n)+ ) amk)x(n - k) (7.2.19)

k=1




Next, let us consider an FIR filter for which m = 2. In this case the output
from a direct-form structure is

yin) = xin) +ex(lixin — 1) + e2(2)x{n — 2) {7.2.22)

By cascading two lattice stages as shown in Fig. 7.10, it is possible 1o obtain the
same output as (7.2.22). Indeed. the output from the first stage is

fitn) = x{n) + Kixin — 1}

(7.2.23)
giln) = Kyxin) +x{n—1)
The output from the second stage is
Sfaln) = filn) + K2g1in = 1)
(7.2.24)
g2in) = Kz fi(n) + g1{n—1)
!
Tolm) Jn)= yin)
x(m)
A ; o
gpln) — Eolm — 1} / f
Joln) = goln) = x(n)
Jiiny = foln) + K ggln = ) =x(n}+ Kxin = 1)
giln) = K foin} + goln — 1) =K x(n) +x(n = 1)
Joln} ___(:\L L)) _ ‘/‘:\' Falm) = yim)
x(m) ’
| 5
o ! i -1 -
gom) L L am L \ e

f2in) = x(n) + Kix(n = 1)+ Ka[Kix{n — 1) + x{(n — 2}]

= x(n) + K1(1+ Kp)x(n - 1) + Kyx(n = 2)
The general form of lattice structure for m stage is given by’

So(n) = goln) = x(n)
fmln) = fruo1(n) + Kngm-1(n — 1) m=12.... M-=1
gﬂl["} = Kmfm-—t{n]'l"gn—l{ﬂ - 1) m=1, 21-1--1M—1

Conversion of lattice coefficients to direct-form filter coefficients. The
direct-form FIR filter coefficients |an (k)] can be obtained from the lattice coeffi-
cients {K;] by using the following relations:

Ao(z) = Bo(z) =1 (7.2.47)
Am(Z) = Ap1(@) + Kn2 " Bpo1(z) m=1,2,... . M—1 (7.248)
B.(z) = z™Au(z”) m=12...M~-1 (7.2.49)




Conversion of direct-form FIR filter coefficients to lattice coefficients.
Suppose that we are given the FIR coefficients for the direct-form realization or,
equivalently, the polynomial A, (z), and we wish to determine the corresponding
lattice filter parameters {K;}. For the m-stage lattice we immediately obtain the
parameter K, = an(m). To obtain K,_; we need the polynomials A,_,(z) since,
in general, K, is obtained from the polynomial A, (z) form=M-1, M-2, ... 1.
Consequently, we need to compute the polynomials A, (z) starting fromm = M —1
and “stepping down" successively to m = 1.

Ky = ttm(m) an-1(0)=1
m (k) = KmBm(k)

s () = St
_ wm(k) — am(m)am(m — k) l<k<m—1
1 - al(m)

STRUCTURES FOR IIR SYSTEMS

In this section we consider different IR system s structures described by the difference equation
given by the system function. Just as in the case o f FIR system s, there are several types o f
structures or realizations, including direct-form structures, cascade-form structures, lattice structures,
and lattice-ladder structures. In addition, IR systems lend them selves to a parallel form realization.
We begin by describing two direct-form realizations.

DIRECT FORM STRUCTURES:

The rational system function as given by (7.1.2) that characterizes an IIR system
can be viewed as two systems in cascade, that is,

H(z) = Hi(z)Ha(2) (7.3.1)
where H;(z) consists of the zeros of H(z), and H>(z) consists of the poles of H(z),

M
Hi(2) = Zbaz_t (7.3.2)
k=l

and

1
) = ——F— (7.3.3)

N
1+ Zmz_l

k=1
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Signal Flow Graphs and Transposed Structures

A signal flow graph provides an alternative, N but equivalent, graphical representation to a
block diagram structure that we have been using to illustrate various system realizations. T he basic
elements o f a flow graph are branches and nodes. A signal flow graph is basically a set o f directed
branches that connect at nodes. By definition, the signal out of a branch is equal to the branch gain
(system function) times the signal into the branch. Furthermore, the signal at anode o f a flow graph
is equal to the sum o f the signals from all branches connecting to the node.
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Cascade-Form Structures

Let us consider a high-order IR system with system function given by equation. Without loss o
f generality we assume that N > M . T h e system can be factored into a cascade o f second-
order subsystem s, such that H (z) can b e expressed as




X
Hi{z) = ]_[ Hi{(z)

k=1
where K is the integer part of (N + 1)/2. H;(z) has the general form

beo + bz~ + byaz 7t

Hi{z) =
k2) 1+ayz ' +apz?

The general form of the cascade structure is illustrated in Fig. 7.19. If we
use the direct form Il structure for each of the subsystems, the computational
algorithm for realizing the IIR system with system function H(z) is described by
the following set of equations.

yo(n) = x(n) (7.3.16)
wg(n) = —agywi(n — 1) — aprwyin — 2) + w1 (n) k=1,2,....K (7.3.17)
yel(n) = byowe(n) + byup(n — 1) + bawe(n — 2) k=12..... K (7.3.18)
y(n) = yg(n) (7.3.19)
xln) =x,(n) xylmy Xyln)
Hyz) Hya) | ror el Hylz)
¥in) ¥gim) wn)
{a}
wm D =1 b:: _ yiim) = xp o y(m)
S
-1
“ b
=T
z—I
—iy by
(b)

Parallel-Form Structures

A parallel-form realization o f an IIR system can be obtained by performing a partial-fraction
expansion o f H( z) . Without loss o f generality, w e again assume that N > M and that the poles are
distinct. Then, by performing a partial-fraction expansion o f H( z ), we obtain the result

H()=C+ f: L
1= P!
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The realization of second order form is given by
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The general form of parallel form of structure is f\given by
wiln) = —apui(n = 1) = apawi(n = 2) + x(n) k=12 ..., K

yeln) = bypwy(n) + bywe(n — 1) k=12,....K

K
¥(n) = Cx(n) + ) _ ye(n)
k=1
Lattice and Lattice-Ladder Structures for IR Systems

In Section 7.2.4 we developed =2 lattice filter structure that is equivalent to an FIR
system. In this section we extend the development to IIR systems.
Let us begin with an all-pole system with system function

H{z) = — 1 = A:{z} (7.3.26)
14+ ay()z™*
k=]

The direct form realization of this system is illustrated in Fig. 7.23. The difference
equation for this IIR system is

N
y(n)=—3 an(k)y(n — k) + x(n) (7.3.27)

k=1
It is interesting to note that if we interchange the roles of input and output
[i.e., interchange r(n) with y(n} in (7.3.27)], we obtain

N
x(n) = -3 an(k)x(n — k) + y(n)

k=1




or, equivalently,

N
y(m) =x(m) + Y _an(k)x(n — k) (7.3.28)

k=]

We note that the equation in (7.3.28) describes an FIR system having the
system function H (z) = Ax(z), while the system described by the difference equé”
tion in (7.3.27) represents an IIR system with system fuaction H(z) = 1/An(2-
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IIR AND FIR FILTERS
The transfer function is obtained by taking Z transform of finite sample impulse response. The filters
designed by using finite samples of impulse response are called FIR filters.
Some of the advantages of FIR filter are linear phase, both recursive and non recursive, stable and
round off noise can be made smaller.
Some of the disadvantages of FIR filters are large amount of processing is required and non integral
delay may lead to problems.
DESIGN OF FIR FILTERS

An FIR filter of length M with input x(n) and output y(n} is described by the
difference equation

yin) = bpx(n) +byx(n - 1) +-- -+ by_1xin =~ M + 1)

=]
= E bixin — k)
bmel)

where (b;] is the set of filter coefficients. Alternatively, we can express the output
sequence as the convolution of the unit sample response h(n) of the system with
the input signal. Thus we have

M-1
y(m) = hk)x(n —k) (82.2)
k=l

(8.2.1)

where the lower and upper limits on the convolution sum reflect the causality and
finite-duration characteristics of the filter. Clearly, (8.2.1) and (8.2.2) are identical
in form and hence it follows that by = h{k), k=0,1,..., M - 1.
The filter can also be characterized by its system function
M-1

H(z) = ): hik)z ™ (8.2.3)
k=0

which we view as a polynomial of degree M — 1 in the variable z='. The roots of
this polynomial constitute the zeros of the filter.

An FIR filter has linear phase if its unit sample response satisfies the condi-
tion

hin) ==xh(M -1 —n) n=01,..., M-—1 (8.2.4)

When the symmetry and antisymmetry conditions in (8.2.4) are incorporated into
(8.2.3), we have

H(z) = h(0) + (2™ + (227 + - + h(M —2)z= M2 4 p(af — 1)z~ ™D

M1 (M=3)72
= FiM-172 {h ( 5 ) + Z hin) [Z{M—I—H].ﬂ iz—:u—l—um]l M odd
LES 1]

(M 2)=1
= zTMINE R R WO 4 MI202] M even (8.2.5)

m=ll

Now, if we substitute z~' for z in (8.2.3) and multiply both sides of the resulting
equation by z~'¥-1 we obtain

MU HGTY = 2 H(z) (8.2.6)




When h(n) = h(M — 1 —n), H(w) can be expressed as
H(w) = H,(w)e /eM-D2 (8.2.7)

where H,.(w) is a real function of w and can be expressed as

M’_] {H"'l.:'fz —
H,[m}=h( ; )+z 3 h(n}mw(‘“ Imn) Modd  (828)

n=l} 2
(M2)-1 M—1
H(w) =2 ; h{n}cosm( 3 -—n) M even (8.2.9)
The phase characteristic of the filter for both M odd and M even is
—w(Mz_l), if H{w) =0
O) = M1 (8.2.10)
—w( 3 )+rr, if H(w) <0

When
hin) =—h(M -1 —n)

the unit sample response is antisymmetric. For M odd, the center point of the
antisymmetric k(n) is n = (M — 1)/2. Consequently,

h(ﬁg—l)=[}

It is straightfarwa;rd to show that the frequency res];uns-e of an FIR filter with
an antisymmetric unit sample response can be expressed as

H(w) = H, (w)e/l-@M-12+17) (8.2.11)
where
(M=3)72 M~1
Hiw) =2 3 h{n}sinm( —n) M odd (8.2.12)
rizl)
(M 2)-1 M1
Hy(w) =2 E h{n]sinm( —n) M even (8.2.13)

==l
The phase characteristic of the filter for both M odd and M even is

M-=1
E-m( ), if Hy(w) =0

2

@ =13, M-—l)

(8.2.14)

if H(w) <0




The choice of a symmetric or antisymmetric unit sample response depends
on the application. As we shall see later, a symmetric unit sample response is
suitable for some applications, while an antisymmetric unit sample response is
more suitable for other applications. For example, if h(n) = —~h(M —1 —n) and M
is odd, (8.2.12) implies that H,(0) = 0 and H,(r) = 0. Consequently, {(8.2.12) is not
suitable as either a lowpass filter or a highpass filter. Similarly, the antisymmetric
unit sample response with M even also results in H,(0) = 0, as can be easily verified
from (8.2.13). Consequently, we would not use the antisymmetric condition in the
design of a lowpass linear-phase FIR filter. On the other hand, the symmetry
condition hi{n) = h(M — 1 — n) vyields a linear-phase FIR filter with a nonzero
response at w = 0, if desired, that is,

(M=3)2

M-1
= — 2 v
H,(0) h( 5 )+ ; h(n), M odd (8.2.15)
{M2-1
H{)=2 ) hin), M even (8.2.16)
=0

8.2.2 Design of Linear-Phase FIR Filters Using Windows

In this method we begin with the desired frequency response specification Hy(w)
and determine the corresponding unit sample response hy(n). Indeed, hy(n) is
related to Hy(w) by the Fournier transform relation

Hy@) =) ha(n)e™ o (8.2.17)
n={

where .
ha(n) = é . Hy(w)e'™dw (8.2.18)

Thus, given Hs(w), we can determine the unit sample response h;(n) by evaluating
the integral in (8.2.18).




In general, the unit sample response h,(r) obtained from (8.2.17) is infinite
in duration and must be truncated at some point, say at n = M — 1, to yield an
FIR filter of length M. Truncation of hy(n) to a length M — 1 is equivalent to
multiplying hs(n) by a “rectangular window,” defined as

wm={y i M (82.19
Thus the unit sample response of the FIR filter becomes
h(n) = hg(nyw(n)
- { ha(n), n=01,....M—1 (8.2.20)
0, otherwise

It is instructive to consider the effect of the window function on the de-
sired frequency response Hy(w). Recall that multiplication of the window function
w(n) with hy(r) is equivalent to convolution of H,(w) with W(w), where W(w) is
the frequency-domain representation (Fourier transform) of the window function,
that is,

M=1 .
Ww) =Y win)e /™ (8.2.21)
n=0
Thus the convolution of Hy(w) with W(w) yields the frequency response of the
(truncated) FIR filter. That is,
i
Hiw) = E—:T— Hy(v)Wiw — vidy (8.2.22)

-

The Fourier transform of the rectangular window is

M =1
W(w) = z g jun
prs=d)

1-—e-iw sin(w/2)
This window function has a magnitude response
| sin(wM [2)] <
| sin{w/2)| -

(8.2.23)

iW(w)| = (6.2.24)

1A
)

and a piecewise linear phase

-M(M;I)* when sin(wM/2) > 0

M1 (8.2.25)
-m( )+:r. when sm(wM/2) <0

2

The magnitude response of the window function is illustrated in Fig. 8.4 for M = 31
and 61. The width of the main lobe [width is measured to the first zero of W(w)]




Name of Time-domain sequence,

window hn)D=sn=M=1
5 “_Hz-l
Bartlett {tri 1=
(wriangular) v
2rn 4mn
Black 42 =0 —_— i
ckman 0.42 .5006”_1 ﬂﬂ&ms”_l
Hamming 0.54 — (.46 cos oxn
M-1
) 1 2mn
Hanning E(l_mﬂ—l)

Kaiser
o= (55-)]
2
_ L
Sin[lﬁ(ﬂ-Hz 1)/{”-1}}
Lanczos 2( M—l) (M-—-l) L=0
alm— 3 / 3
l,n-—-M;] fayl_] 0o <1
1 r—(1+a)M-1)2
Tokey i[l*m T—e)(M - 12 ”)]
aiM =1)72 = n-HHl‘EM;]

8.2.3 Deslign of Linear-Phase FIR Filters by the
Frequency-Sampling Method

In the frequency sampling method for FIR filter design, we specify the desired
frequency response H,(w) at a set of equally spaced frequencies, namely

M-1

wr=Zk+a) k=01...,.—— M odd
k=ﬂ,l.+,.,£{2-—-—1 M even 8.230)
a=0 or 3

and solve for the unit sample response h(n) of the FIR filter from these equally




spaced frequency specifications. To reduce sidelobes, it is desirable to optimize the
frequency specification in the transition band of the filter. This optimization can be
accomplished numerically on a digital computer by means of linear programming
techniques as shown by Rabiner et al. (1970).

In this section we exploit a basic symmetry property of the sampled frequency
response function to simplify the computations. Let us begin with the desired
frequency response of the FIR filter, which is [for simplicity, we drop the subscript
in Hy(w)],

M=1

H() =Y h(n)e " (8.2.31)
A=)

Suppose that we specify the frequency response of the filter at the frequencies
given by (8.2.30). Then from (8.2.31) we obtain

Hk+a)=H (%{k+u})

M=1
Hik+a) = E hn)e /Trlbtan/M b 0 1,....M—1 (8.2.32)
e

It is a simple matter to invert (8.2.32) and express h(n) in terms of H(k + o).
If we multiply both sides of (8.2.32) by the exponential, exp(j2rkm/M), m = 0,
1,....M — 1, and sum over k =0, 1, ..., M — 1, the right-hand side of (8.2.32)
reduces to Mh(m)exp{—j2ram/M). Thus we obtain
1 M-1 .
hn) = — ) H(k+a)eramM 5 =01, M-1 (8.2.33)
M=
The relationship in (8.2.33) allows us to compute the values of the unit sample
response h(n) from the specification of the frequency samples H(k + &), k = 0,
1,..., M — 1. Note that when o = (0, (8.2.32) reduces to the discrete Founer
transform (DFT) of the sequence {A(n)} and (8.2.33) reduces to the inverse DFT
(IDFT).
Since {h(n)} is real, we can easily show that the frequency samples {H (k+a)}
satisfy the symmetry condition

Hk +a)=H"(M —k — ) (8.2.34)

This symmetry condition, along with the symmetry conditions for {h(n)}, can be
used to reduce the frequency specifications from M points to (M + 1),2 points for
M odd and M/2 points for M even. Thus the linear equations for determining
{h(n)} from {H(k + )} are considerably simplified.

In particular, if (8.2.11) is sampled at the frequencies w; = 2a{k + a)}/M,
k=01,...,M =1, we obtain

Hk + o) = H, (%(t + cr:l) e/1Am/2-2n kta)(M-1)/2M] (8.2.35)




where £ = (0 when {h(n)} 1s symmetnic and 8 = 1 when {k(n)} is antisymmetric. A
simplication occurs by defining a set of real frequency samples {G(k + m)]

m
Gk +a) = (-1*'H, (If-{k + ﬂ')) k=0,1,..., M—~1 (8.2.36)

We use (8.2.36) in (8.2.35) to eliminate H,(w;). Thus we obtain
H(k + @) = G(k + a)e/™ gllPrR-2rk+a)M-1)2M] (8.2.37)

Now the symmetry condition for H(k + @) given in (8.2.34) translates into a corre-
sponding symmetry condition for G(k + @), which can be exploited by substituting
into (8.2.33), to simplify the expressions for the FIR filter impulse response {h(n)}
for the four cases @ =0, @ = }, £ =0, and B = 1. The results are summarized in
Table 8.3, The detailed derivations are left as exercises for the reader.

8.2.4 Design of Optimum Equiripple Linear-Phase FIR
Filters

The window method and the frequency-sampling method are relatively simple
technigues for designing linear-phase FIR filters. However, they also possess some
minor disadvantages, described in Section 8.2.6, which may render them undesir-
able for some applications. A major probiem is the lack of precise control of the
critical frequencies such as w, and w;,.

The filter design method described in this section is formulated as a Cheby-
shev approximation problem. It is viewed as an optimum design criterion in the
sense that the weighted approximation error between the desired frequency re-
sponse and the actual frequency response is spread evenly across the passband

and evenly across the stopband of the filter minimizing the maximum error. The
resulting filter designs have ripples in both the passband and the stopband.

To describe the design procedure, let us consider the design of a lowpass
filter with passband edge frequency w, and stopband edge frequency w,. From
the general specifications given in Fig. 8.2, in the passband, the filter frequency
response satisfies the condition

1-6 <H(w)=1+4§ lr| < ey (8.2.43)

Similarly, in the stopband, the filter frequency response is specified to fall between
the limits +4;, that is,

— & < H,(w) < & lw| > ey (8.2.44)

Thus §; represents the ripple in the passband and é; represents the attenuation or
ripple in the stopband. The remaining filter parameter is M, the filter length or
the number of filter coefficients.




Case 1: Symmetric unit sample response hin) = h(M —1—n) and M Odd.
In this case, the real-valued frequency response charactenstic H,(w) 18

M-1 = M~1
H,{m}:h( 5 )+2 ): h[n]msw( 5 —n) (8.2.45)

()
If we let k = (M —1)/2 — n and define a new set of filter parameters {a(k)) as

h(ﬁl) k=0

2
ak) = (8.2.46)
M-1 M-1
%(T—k). k=1.2,..,,T
then (8.2.45) reduces to the compact form
(M=1)/2
H(w)= )  a(k)coswk (8.2.47)
k=0

Case 2: Symmetric unit sample response h(n) = h(M —1—n) and M Even.
In this case, H,(w) is expressed as

(M2)-1 M—1

H(w)=2 Y  hir)cosw ( - n) (8.2.48)
n={) 2

Again, we change the summation index from n to k = M/2 — n and define a new

set of filter parameters (b(k)} as

b{k}=2&(%{—k).k=l,2,,..,ﬂﬁ (8.2.49)

With these substitutions (8.2.48) becomes

M2
H,(w) = E b(k) cosw (k — %) (8.2.50)

k=1
In carrying out the optimization, it is convenient to rearrange (8.2.50) further into
the form

o (MD=1
H.(w)=cos= Y b(k)coswk (8.2.51)
2 k=l

where the coefficients {E(k}] are linearly related to the coefficients {b(k)}. In fact,
it can be shown that the relationship is

b)) = 3b(1)

b(k) = 2b(k) — b(k — 1) k=1,2,3,...,%—2 (8.2.52)

(%) (%)




Case 3: Antisymmetric unit sample response h(n) = —h(M — 1 — n) and
M 0Odd. The real-valued frequency response characteristic H, (w) for this case is
(M-3)72 M—1
H(w)=2 h{n) sin w ( — .rt) 8.2.53
) g ) 5 (8.2.53)

If we change the summation in (8.2.53) from n to k = (M — 1)/2 — n and define a
new set of filter parameters {c(k)} as

c(k) = 2k (Hg;l-k) k=L2..,(M=1p2 (8.2.54)
then (8.2.53) becomes
(M-1)/2
H,(w) = Z c(k) sin wk (8.2.55)
k]

As in the previous case, it is convenient to rearrange (8.2.55) into the form

(M =3)2
H,(w) = sinw Z Z(k) cos wk (8.2.56)
k=l)

Case 4: Antisymmetric unit sample response hin) = —h(M — 1 — n) and
M Even. In this case, the real-valued frequency response characteristic H, (w) is
(M2)-1 M~ 1
Hiw) =2 Z hin)sin w ( - n) (R.2.58)
n={ 2

A change in the summation index from n to k = M/2—n combined with a definition
of a new set of filter coefficients {d(k)|, related to {h{n)} according to

d(k) = 2h (-g -—k) k——~l.2....,g (8.2.59)
results in the expression
M2 1
H(w) =) d(k)sinw (k - i) (8.2.60)

k=1

As in the previous two cases, we find it convenient to rearrange (8.2.60) into the
form
@ (M2-1
H.(w) = sin 3 z dik) cos wk (8.2.61)
=0




Filter type O {ew) Pla)

hin) = h(M — 1 — n) (M =1)2

M odd 1 alk) cos ak
(case 1) ;

hin) = hiM —1 —n) (M-
M even coss Y bk)coswk
(case 2) 2 —

hin) = —hiM -1 —n) (=312
M odd sinm w Z Cik) cos ek
(case 3) =

hin) = —h(M -1 —n) (2-1
M even siﬂ2 Z d (k) cos ek
(case 4) 2 =

IR FILTER DESIGN
DESIGN OF IIR FILTERS FROM ANALOG FILTERS

Just as in the design of FIR filters, there are several methods that can be used to
design digital filters having an infinite-duration unit sample response. The tech-
niques described in this section are all based on converting an analog filter into
a digital filter. Analog filter design is a mature and well developed field, so it is
not surprising that we begin the design of a digital filter in the analog domain and
then convert the design into the digital domain.

An analog filter can be described by its system function.

M
Bis*
B{S] k=)
Hy(s) = A(s) T (8.3.1)

where {a,) and {f8,} are the filter coefficients, or by its impulse response, which is
related to H,(s) by the Laplace transform

Hy(s) = f hit)e ™ dt (8.3.2)
Alternatively, the analog filter having the rational system function H(s) given in
(8.3.1), can be described by the linear constant-coefficient differential equation

Noodtyiy L dtxn
Lega = b ®33

where x(r) denotes the input signal and y(r) denotes the output of the filter.

Each of these three equivalent characterizations of an analog filter leads to
alternative methods for converting the filter into the digital domain, as will be
described in Sections 8.3.1 through 8.3.4. We recall that an analog linear time-
invariant system with system function H(s) is stable if all its poles lie in the left
half of the s-plane. Consequently, if the conversion technique is to be effective, it
should possess the following desirable properties:

L The jQ axis in the s-plane should map into the unit circle in the z-plane.
Thus there will be a direct relationship between the two frequency variables
in the two domains.




2. The left-half plane (LHP) of the s-plane should map into the inside of the
unit circle in the z-plane. Thus a stable analog filter will be converted to a
stable digital filter.

We mentioned in the preceding section that physically realizable and stable
IIR filters cannot have linear phase. Recall that a linear-phase filter must have a
system function that satisfies the condition

Hiz) =+z"YH(z™") (8.3.4)

where =" represents a delay of N units of time. But if this were the case, the
filter would have a mirror-image pole outside the unit circle for every pole inside
the unit circle. Hence the filter would be unstable. Consequently, a causal and
stable IIR filter cannot have linear phase.

If the restriction on physical realizability is removed, it is possible to obtain
a linear-phase IIR filter, at least in principle. This approach involves performing a
time reversal of the input signal x{n), passing x(—n) through a digital filter H(z),
time-reversing the output of H(z), and finally, passing the result through H(z)
again. This signal processing is computationally cumbersome and appears to offer
no advantages over linear-phase FIR filters. Consequently, when an application
requires a linear-phase filter, it should be an FIR filter.

In the design of IIR filters, we shall specify the desired filter characteristics
for the magnitude response only. This does not mean that we consider the phase
response unimportant. Since the magnitude and phase characteristics are related,
as indicated in Section 8.1, we specify the desired magnitude characteristics and
accept the phase response that is obtained from the design methodology.

8.3.1 lIR Filter Design by Approximation of Derivatives

One of the simplest methods for converting an analog filter into a digital filter is to
approximate the differential equation in {8.3.3) by an equivalent difference equa-
tion. This approach is often used to solve a linear constant-coefficient differential
equation numerically on a digital computer.

For the derivative dy(r)/dt at time t = nT, we substitute the backward dif-
ference [y(nT) = y(nT = 1)}/T. Thus

dyir) _ ¥@mT) = y(nT —T)
dr fr=nT - T
- y(n—1

where T represents the sampling interval and y(n) = v(nT). The analog differ-
entiator with output dy(r)/dt has the system function H(s) = s, while the digi-
tal system that produces the output [y(n) — y(n — 1)]/T has the system function
H(z) = (1 —z71)/T. Consequently, as shown in Fig. 8.29, the frequency-domain
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| P - e

! ! T Figure 829 Substitution of the
= — backward difference for the derivative
(b) implies the mapping s = (1 - z7')/T.

equivalent for the relationship in (8.3.5) is

BEs

5 =
T
The second derivative d°y(r)/d¢* is replaced by the second difference, which
is derived as follows:

(8.3.6)

dy@|  _ d[dy®
de2 | _,r  dt| dr J.p
_ ynT) = y(nT = TY)/T = [y(nT = T) = y(nT = 2T)}/T
a T
win) =2vin =1} 4 vin = 2)
= 73 (83.7)
In the frequency domain, (8.3.7) is equivalent 1o
- 2

2 _ 1-2z714 22 _ 1-2z"1
£ = T2 = 7 (8.3.8)

It easily follows from the discussion that the substitution for the kth derivative
of y(r) results in the equivalent frequency-domain relationship

1-z71\f
st = ( = ) (8.3.9)

Consequently, the system function for the digital IIR filter obtained as a result of
the approximation of the derivatives by finite differences is

H(z2) = Ha(s)s=—z1y/r (8.3.10)
where H,(s) is the system function of the analog filter characterized by the differ-
ential equation given in (8.3.3).

Let us investigate the implications of the mapping from the s-plane to the
z-plane as given by (8.3.6) or, equivalently,

1
l1—sT
If we substitute s = jQ in (8.2.11), we find that
1
= 1-jar

(8.3.11)

 —
i ——

z




1 . Qr
= 1ror HTrer
As © varies from —oc to oo, the corresponding locus of points in the z-plane is a
circle of radius % and with center at 7 = %, as illustrated in Fig. §.30.

It is easily demonstrated that the mapping in (8.3.11) takes points in the
LHP of the s-plane into corresponding points inside this circle in the z-plane and
points in the RHP of the s-plane are mapped into points outside this circle. Con-
sequently, this mapping has the desirable property that a stable analog filter is
transformed into a stable digital filter. However, the possible location of the poles
of the digital filter are confined to relatively small frequencies and, as a conse-
quence, the mapping is restricted to the design of lowpass filters and bandpass
filters having relatively small resonant frequencies. It is not possible, for exam-
ple, to transform a highpass analog filter into a corresponding highpass digital
filter.

In an attempt to overcome the limitations in the mapping given above, more
complex substitutions for the derivatives have been proposed. In particular, an
Lth-order difference of the form

dy(i)
dr

(8.3.12)

*-Z y(nT-{-kT}T}[nT—kT} (8.3.13)

r=nT k=l
has been proposed, where [&;} are a set of parameters that can be selected to
optimize the approximation. The resulting mapping between the s-plane and the
z-plane is now

=7,-1:§i oy (2f —27h (8.3.14)
it circle » o
IL _ N s-plane

Figure 830 The mapping s = {1 -z~ '}thlkes[}IPmths:plu:emmpmnu
inside the circle of radius 4 and center z = § in the z-plane.




When z = ¢/*, we have

2 i
5= JF Ea; sin wk (8.3.15)

which is purely imaginary. Thus

2 L
Q== > oysinwk 8.3.16
7 E ' (8.3.16)
is the resulting mapping between the two frequency variables. By proper choice
of the coefficients {ax} it is possible to map the j{i-axis into the unit circle. Fur-
thermore, points in the LHP in s can be mapped into points inside the unit circle
n z.

Despite achieving the two desirable characteristics with the mapping of
(8.3.16), the problem of selecting the set of coefficients (e, remains. In general,
this is a difficult problem. Since simpler techniques exist for converting analog
filters into IIR digital filters, we shall not emphasize the use of the Lth-order
difference as a substitute for the derivative.

8.3.2 liR Filter Design by Impulse Invariance

In the impulse invariance method, our objective is to design an IIR filter having a
unit sample response k(n) that is the sampled version of the impulse response of
the analog filter. That 1s,

hin) = h(nT) n=1012,... (8.3.17)

where 7 is the sampling interval.

To examine the implications of (8.3.17), we refer back to Section 4.2.9. Recall
that when a continuous time signal x,(r) with spectrum X,(F) is sampled at a
rate F; = 1/T samples per second, the spectrum of the sampled signal is the
periodic repetition of the scaled spectrum F,X,(F) with period F,. Specifically,
the relationship is

X(f)=F Y X(f=KF] (8.3.18)
k=—oa
where f = F/F, is the normalized frequency. Aliasing occurs if the sampling rate
F, is less than twice the highest frequency contained in X, (F).
Expressed in the context of sampling the impulse response of an apalog
filter with frequency response H,(F), the digital filter with unit sample response
h(n) = h,(nT) has the frequency response

H(f)=F, Y H[(f~kF] (8.3.19)
k=—00
or, equivalently,
Hw)=F, )  Hl(w—27k)F,] (8.3.20)

k=—00




ar

H(QT) = % > H, (n - %:5) (8.3.21)

k=—nC

Figure 8.31 depicts the frequency response of a lowpass analog filter and the
frequency response of the corresponding digital filter.

It is clear that the digital filter with frequency response H(w) has the fre-
quency response characteristics of the corresponding analog filter if the sampling
interval T is selected sufficiently small to completely avoid or at least minimize
the effects of aliasing. It is also clear that the impulse invariance method is in-
appropriate for designing highpass filters due the to spectrum aliasing that results
from the sampling process.

To investigate the mapping of points between the z-plane and the s-plane
implied by the sampling process, we rely on a generalization of (8.3.21) which
relates the z-transform of k(n) to the Laplace transform of k.(r). This relation-
ship is

1 & 2k
H@lmer = = 3 Ha (s - j—) (8322

ke—po




where

oo
H(z) = ) h(m)z™
n={)
[~ =]
H(2)|imer = ) h(n)e™*™" (8.3.23)
)

Note that when s = j£2, (8.3.22) reduces to (8.3.21), where the factor of j in H, (52}
is suppressed in our notation.
Let us consider the mapping of points from the s-plane to the z-plane implied
by the relation
r=¢ (8.3.24)

If we substitute s = o + 2 and express the complex variable ; in polar form as
z = re/®, (8.3.24) becomes

rel® = 9T /49T
Clearly, we must have
r=e¢7
(8.3.25)
w = T

Conseguently, ¢ < 0 implies that 0 < r < 1 and ¢ > 0 implies that r = 1. When
o = (), we have r = 1. Therefore, the LHP in s 1s mapped inside the unit circle in
z and the RHP in s is mapped outside the unit circle in z.

Also, the jQ-axis is mapped into the unit circle in z as indicated above. How-
ever, the mapping of the jQ-axis into the unit circle is not one-to-one. Since w
is unigue over the range (—n, 7}, the mapping @ = QT implies that the interval
—n/T <= Q < n/T maps into the corresponding values of —7 < w < m. Fur-
thermore, the frequency interval m/T < € < 3x/T also maps into the interval
-7 < w = 7 and, in general, so does the interval (2k — 1)a/T <= Q < (2k+ 1)7/T,
when k is an integer. Thus the mapping from the analog frequency 2 to the fre-
quency variable w in the digital domain is many-tc-one, which simply reflects the
effects of aliasing due to sampling. Figure 8.32 illustrates the mapping from the
s-plane to the z-plane for the relation in (8.3.24).

To explore further the effect of the impulse invariance design method on
the characteristics of the resulting filter, let us express the system function of the
analog filter in partial-fraction form. On the assumption that the poles of the
analog filter are distinct, we can write

N

Ci
H,(s) = (8.3.26)
; §—= P

where {p;) are the poles of the analog filter and {c;} are the coefficients in the
partial-fraction expansion. Consequently,

N
ho() = Z e >0 (8.327)
k=1




/ Figure 832 The mapping of z = ¢'7

/ﬁ in maps strips of width 2x/T (for o < 0) in

S s — T the s-plane into points in the unit crcle
+ i the z-plane.

If we sample h,(r) periodically at 1 =nT, we have
hin) = h,(nT)

= Z Cg-f'mr" (8-32’8}

Now, with the substitution of (8.3.28), the system function of the resulting digital
IIR filter becomes

oo
H(z) = ) h(mz™
i)

£ ()

L Y )
N o0
=3y (enTy (8.3.29)
k=] n=l{)
The inner sum in (8.3.29) converges because p; < 0 and yields
> i T —lym 1

Therefore, the system function of the digital filter is

N
Ck
H@) = g T =t (8.3.31)
We observe that the digital filter has poles at
n=eT k=12, N (8.3.32)

8.3.3 lIR Filter Design by the Bilinear Transformation

The IIR filter design techniques described in the preceding two sections have a
severe limitation in that they are appropriate only for lowpass filters and a limited
class of bandpass filters.

In this section we describe a mapping from the s-plane to the z-plane, called
the bilinear transformation, that overcomes the limitation of the other two design




methods described previously. The bilinear transformation is a conformal mapping
that transforms the jfl-axis into the uwnit circle in the z-plane only once, thus
avoiding aliasing of frequency components. Furthermore, all points in the LHP of
s are mapped inside the unit circle in the z-plane and all points in the RHP of s
are mapped into corresponding points outside the unit circle in the z-plape.

The bilinear transformation can be linked to the trapezoidal formula for
numerical integration. For example, let us consider an analog linear filter with
system function

b
His) = 8.3.33
(s) Tt a { )|
This system is also characterized by the differential equation
dv(t
,%31 + av(r) = bx(r) (8.3.34)

Instead of substituting a finite difference for the derivative, suppose that we in-
tegrate the derivative and approximate the integrali by the trapezoidal formula.
Thus

wi#) =f yiridt + y(rg) (8.3.35)
L]

where y'(r) denotes the derivative of v(7). The approximation of the integral in
(8.3.35) by the trapezoidal formula at t = nT and iy = nT — T yields

T
¥(nT) = -z—[y’(n?") + ¥ (nT —T)]+ y(nT —T) (8.3.36)

Now the differential equation in (8.3.34) evaluated at + = nT yields
¥(nT) = —ay(inT) + bx(nT) (8.3.37)

We use (8.3.37) to substitute for the derivative in (8.3.36) and thus obtain a dif-
ference equation for the equivalent discrete-time system. With y{n) = y»(nT) and
x(n) = x(nT), we obtain the result

r T T
(1 + %) vim) — (1 - ET) yvin—1)= E5—[.1:{1":3 + xi{n —1)] (8.3.38)
The z-transform of this difference equation is
T T bT
(1 + ﬂ—) Y(z) — (1 - f—) Y@= 1+ X @
2 2 2
Consequently, the system function of the equivalent digital filter is

¥Y(z) _ GT/2)A +2z71)
X(z) 14+aT/2—(1—aT/2)z—!

Hiz) =

or, equivalently,

H(z) = b (8.3.39)

21—z
T\1+z"1 +a




Clearly, the mapping from the s-plane to the z-plane is

R |
5= % (%) (8.3.40)

This is called the bilinear transformation.

Although our derivation of the bilinear transformation was performed for a
first-order differential equation, it holds, in general, for an Nth-order differential
equation.

To investigate the characteristics of the bilinear transformation, let

z=re®
s =0+ jR
Then (8.3.40) can be expressed as
2z-1
Jf= =—
Tz+1
_ 2reiv-1
T Trew+1
_3( r?-1 L 2rsinw )
“T\1+r +2rcosw  '1+7 +2rcosw
Consequently,
2 I |
= - 8341
ST T1 Pt 2rcosw ( )
2 2r si
= Bt (8.3.42)

T T1+4r+2rcosw

First, we note that if r < 1, then ¢ < 0, and if r > 1, then ¢ > (. Conse-

quently, the LHP in s maps into the inside of the unit circle in the z-plane and the
EHP in s maps into the outside of the unit circle. When r =1, then o = 0 and

2 sinw

Q= - —
T1+cosw
2 @

= —tan — B.3.43
7 tan > ( )
or, equivalently,
w=2tan™} nz_r (8.3.44)

The relationship in (8.3.44) between the frequency variables in the two domains
is illustrated in Fig. 8.36. We observe that the entire range in £ is mapped only
once into the range —w < @ < x. However, the mapping is highly nonlinear. We
observe a frequency compression or frequency warping, as it is usually called, due
to the nonlinearity of the arctangent function.

It is also interesting to note that the bilinear transformation maps the point
s = oo into the point ; = —1. Consequently, the single-pole lowpass filter in
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Chebyshev filters, There are two types of Chebyshev filters. Type I
Chebyshev filters are all-pole filters that exhibit equiripple behavior in the pass-
band and a monotonic characteristic in the stopband. On the other hand, the
family of type II Chebyshev filters contains both poles and zeros and exhibits a

monotonic behavior in the passband and an equiripple behavior in the stopband.
The zeros of this class of filters lie on the imaginary axis in the s-plane.

The magnitude squared of the frequency response characteristic of a type 1
Chebyshev filter is given as
1

1+ e2TZ(Q/Q,)

|H(Q) = (8.3.51)

where € is a parameter of the filter related to the ripple in the passband and Ty(x)
is the Nth-order Chebyshev polynomial defined as

_ | cos(N cos~1x), jx] <1
Tv(x) = [msh[H coshlx),  |x[>1 ®35)

The Chebyshev polynomials can be generated by the recursive equation
Ty p1(x) = 2xTyixy = Twoa(x) N=112... (8.3.53)

where Ty{x) = | and Ti(x) = x. From (8.3.53) we obtain T3(x) = 2x2 -1, Talx) =
4x* — 3x, and so on.
Some of the properties of these polynomials are as follows:

1. |[Tyix)] = 1 for all x| = 1.
2. Ty(1) =1 forall N.
3. All the roots of the polynomial Ty(x) occur in the interval -1 < x =< 1.




The filter parameter € is related to the ripple in the passband, as illustrated
in Fig. 8.39, for N odd and N even. For N odd, Ty(0) = 0 and hence |H(0)]? = 1.
On the other hand, for N even, Ty(0) = I and hence |H (0)* = 1/(1 + €2). At the
band edge frequency Q2 = £2,, we have Ty (1) = 1, so that

1
1+e

=1-4§

1l

or, equivalently,
.1
(1— &)
where 4, is the value of the passband ripple.
The poles of a type | Chebyshev filter lie on an ellipse in the s-plane with
major axis

€ 1 (8.3.54)

2z
1
ﬁ_mﬁ£ (8.3.55)
and minor axis
g -1
n=%, ~55 (8.3.56)
where f is related to € according to the equation
/N
NS e |
8= [—*_‘_i_] (8.3.57)
€

The pole locations are most easily determined for a filter of order N by first locating
the poles for an equivalent Nth-order Butterworth filter that lie on circles of radius
ry or radius r;, as illustrated in Fig. 8.40. If we denote the angular positions of the
poles of the Butterworth filter as

x  {2k+ 1w

k= TN k=0,1,2,..., N-1 (8.3.58)
then the positions of the poles for the Chebyshev filter lie on the ellipse at the
coordinates (x,, w). k=0,1,..., N —1, where

X = r; COSghy, k=01,...,N=-1
(8.3.59)
¥i = r SIN ¢y, k=0.1,..., N-1

A type II Chebyshev filter contains zeros as well as poles. The magnitude
squared of its frequency response is given as

1
|H()? = - (8.3.60)
14 €T3/ Qp)/T 5(S/ )
where Ty (x) is, again, the Nth-order Chebyshev polynomial and £, is the stopband
frequency as illustrated in Fig, 8.41. The zeros are located on the imaginary axis
at the points

k=0.1,...,N =1 (8.3.61)

S = [ —
'Ism:m




The poles are located at the points (v, wi), where

2,
b= — 2k k=01, N=1 (8.3.62)
NERE
n::}'k
R e k=01,.... N=1 8.3.63
R (8369
\.-'1 2k

where {x;} and {y;} are defined in (8.3.59} with 8 now related to the ripple in the
stopband through the equation

r—] B 55 1/N

1+ V
f=| —m (8.3.64)
82

Iugl:(,f] -8+ J1-80+ 53}) ffﬁz]
log [{n,m,; + (/)2 ~ 1]

_ cosh™'(8/e)
cosh™! (£, /S2)
where, by definition, é> = 1/4/1 4+ 82

Frequency Transformations in the Analog Domain

Band edge
Type of frequencies of
transformation Transformation new filter
EP’
Lowpass § — = Il‘l,
[
0,0
Highpass §—s P @,
5
54 8
Band: —_—, ——— 82,
ropass T e - ) n,
58 — i)
Bandst —_ = T .
ﬂ‘p 3 i 31 + ﬂh ;1; rlf ﬂll

Frequency Transformations in the Digital Domain




Type of
transformation

Transformation

Parameters

Lowpass

Highpass

Bandpass

Bandstop

!l — =

7% = tJ:Z-] + az

gzt =gzl + 1

P —ar +

gz —ajz-t+1

iy

w0y

=]

E]

fi

52 FE
[

| =1

|

= band edge frequency
of new filter
sinf(wp — w})/2]
sinflwy + wp)/2]
= band edge frequency
new filter
cos|(wp + w 2]
cos|(wp — wp)/2]

lower band edge frequency
upper band edge frequency
—2akK (K +1)

(K -1)/(K+1)

_ cos(wn + w1)/2]

i

cos|(w, — wr)/2]
)
7w

lower band edge frequency
upper band edge frequency
—2z/(K +1)
(1-K)}(1+K)
cosf(wn + wr)/2]
cos|(w, = @1)/2]
fary = oy @y
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cot

tan
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UNIT -1V

FINITE WORD LENGTH EFFECTSIN DIGITAL FILTER

Finite Word length Effects:
In the design of FIR Filters, The filter coefficients are determined by the system transfer functions. These
filter co-efficient are quantized/truncated while implementing DSP System because of finite length registers.
Only Finite numbers of bits are used to perform arithmetic operations. Typical word length is 16 bits,
24 hits, 32 bits etc.
This finite word length introduces an error which can affect the performance of the DSP system.
Themain errors are
1. Input quantization error
2. Co-efficient quantization error
3. Overflow & round off error (Product Quantization error)
The effect of error introduced by a signal process depend upon number of factors including the
1. Typeof arithmetic
2. Quality of input signal
3. Type of agorithm implemented
1. Input quantization error
The conversion of continuous-time input signal into digital value produces an error which is known as
input quantization error.
This error arises due to the representation of the input signal by a fixed number of digits in A/D
Conversion process.
2. Co-efficient quantization error
The filter coefficients are compared to infinite precision. If they are quantized the frequency response of
the resulting filter may differ from the desired frequency response.
i.e poles of the desired filter may change leading to instability.
3. Product Quantization error
It arises at the output of the multiplier
When a ‘b’ bit data is multiplied with another ‘b’ bit coefficient the product (*2b’ bits) should be stored
in ‘b’ bits register. The multiplier Output must be rounded or truncated to ‘b’ bits. This known as
overflow and round off error.
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Types of number representation:
There are two common forms that are used to represent the numbersin adigital or any other digital hardware.
1. Fixed point representation
2. Floating point representation
* Explain the various formulas of the fixed point representation of binary numbers.
1. Fixed point representation
In the fixed point arithmetic, the position of the binary point is fixed. The bit to the right represents the
fractional part of the number and to those to the left represents the integer part.




For example, the binary number 01.1100 has the value 1.75 in decimal.
(0429 + (1*2%) +(1*2%) +(1*23 +(0*2% =1.75

In general, we can represent the fixed point number ‘N’ to any desired accuracy by the series

N:éqﬂ
Where, ris called as radix.
If r=10, the representation is known as decimal representation having numbers from O to 9. In this
representation the number

1
30.285=§ C.10

i=-3
= (3*10" )+ (0* 109+ (2* 10™)+(8* 10?)+(5* 10°°)
If r=2, the representation is known as binary representation with two numbers 0 to 1.

For example, the binary number
110.010 = (1*¥2%) + (1*21) + (0*2°) + (0*21) + (1*2%) + (0*2%) = 6.25

Examples:

Convert thedecimal number 30.275 to binary form
2|30 0.275* 2 =20.55 =0
2 15 —o 055*2 =21.10 >1
2 7 1 0.10* 2 =0.20 =20
L5 0.20* 2 =0.40 =0
23 -1 040*2 2080 0
1 -1 0.80* 2 =>1.60 >1
060*2 =21.20 >1
0.20* 2 =0.40 =20

(30.275);0 = (11110.01000110),

In fixed point arithmetic =, the negative numbers are represented by 3 forms.
1. Sign-magnitude form
2. One’s complement form
3. Two’s complement form
1.1 Sign-magnitude form:
Here an additional bit called sign bit is added as M SB.
o Ifthisbitiszero -> Itisapositive number
o Ifthishitisone -> Itisapositive number
For example
0 1.75isrepresented as 01.110000.
o -l.75isrepresented as 11.110000
1.2 One’s complement form:
- Here the positive number is represented same as that in sign magnitude form.
But the negative number is obtained by complementing all the bits of the positive number
For eg: the decimal number -0.875 can be represented as
0 (0.875)10=(0.111000)
o (-0.875)10=(1.000111), 0.111000
L1litle (Complement each bit)

1.000111




1.3 Two’s complement form:
Here the positive numbers are represented as same in sign magnitude and one’s complement form.
The negative numbers are obtained by complementing all the bits of the positive number and adding
one to the least significant bit
(0875) 10:(0.111000)2
LiLliel (Complement each bit)
1.000111
+ 1
1.001000
(-0.875)10=(1.001000)
Examples:
Find the sign magnitude, 1’s complement, 2’s complement for the given numbers.
7
o

w N
+ 1
o~ 0|~

\'

1 -—

w
N

0.21875* 2 =»0.43750 =20
0.43750 * 2 =»0.87500 =20
0.87500* 2 =» 1.750000 21
0.75*2 =150 21
0502 =>1.00 21

- 3—72:(-0.21875)10 =(1.00111),

Sign magnitude form = 1.00111
1’s complement form = 1.11000
2’s complement form = 1.11001

0.875* 2=>1.75 21
0.750* 2=>1500 =>1
0.500* 2=>1.000 =1

- g =(-0.875)10 =(0.111)2
Sign magnitude form = 0.111
1’s complement form = 1.000
2’s complement form = 1.001
3 !
8
Sign magnitude form = 0.111
1’s complement form = 0.111

2’s complement form 0.111
Addition of two fixed point numbers:
Add (0.5)10+ (0.125)19




(0.5)10
(0.125)10

(0.100);
(0.001),

(0.101), = (0.625)10
Addition of two fixed point numbers causes an overflow.
For example

(0.100),
(0.101),
(2.001), = (-0.125)10 in sign magnitude form

Subtraction of two fixed point numbers:

Subtraction of two numbers can be easily performed easily by using two’s complement representation.
Subtract 0.25 from 0.5

0.25* 22050 =0 Sign magnitude form = (0.010),
050*2=>100 =21 1’s complement form = (2.101),
0.00* 2=>0.00 =20 2’s complement form = (2.110),
(0.5)10 = (0.100)2
-(0.25)10= (1.110) —->Two’s complement of -0.25
(10.010),

Herethe carry is generated after the addition. Neglect the carry bit to get the result in decimal.
(0010)2 = (025)10

Subtract 0.5 from 0.25
05*2=2>100 =21 Sign magnitude form = (0.100),
0.00* 2=>0.00 =20 1’s complement form = (1.0112),
0.00* 2=20.00 =20 2’s complement form = (1.100),
(025)10 = (0010)2
-(0.5)10 = (1100)2
(1.110),

Here the carry is not generated after the addition. So the result is negative.
Multiplication in fixed point arithmetic:
Here the sign magnitude components are separated.
The magnitudes of the numbers are multiplied. Then the sign of the product is determined and applied to
the resullt.
In the fixed point arithmetic, multiplication of two fractions results in afraction.
For multiplications with fractions, overflow can never occur.
Eg:
(0.1001),* (0.0011), = (0.00011011),
2. Floating point representation
Here, a number X’ is represented by
X=M.r¢
Where, M -> Mantissa which requires a sign bit for representing positive number and negative
numbers.
R - base (or) radix
e > exponent which require an additional and it may be either positive or negative.
0 For eg, 278 can be represented in floating point representation.
2718 = 278 X 1000 = 0.278* 103
1000
0.278 > Mantissa (M)
10 - base (or) radix (r)
3 - exponents (€)




Similarly, to represent a binary floating point number
X=M.2%in which the fractional part of a number should fall (or) liein the range of 1/2to 1.

5 -5X8 0.625 X2°
Mantissa (M) = 0.625
Base (or) radix (r) = 2
Exponent (€) = 3
Some decimal numbers and their floating point representations are given below:
45 >  05625X2° =0.1001 X 2°*
1.5 >  075X2'  =0.1100X 2°*
6.5 >  08125X 2° =0.1100 X 2°

0625 > 0625x2° =0.1010 X 2°°
Negative floating point numbers are generally represented by considering the mantissa as a fixed point
number. The sign of the floating point number is obtained from the first bit of mantissa.
To represent floating point in multiplication
Consider X, =M,r®
X, =M,r®
X1x2 = (Ml* M Z)r(elJrQZ)
Example
Given X, =35*10' % X, =4.75*10° Find the product XX,
X=(3.5 X 4.75) 10(12*®)
= (16.625)10° > in decimal
In binary: (1.5)10 X (1.25)10 (2'0.75) X (2'0.625)
291X 0.1100 X 2°*X 0.1010
2% 0.01111

Addition and subtraction:
Here the exponent of a smaller number is adjusted until it matches the exponent of alarger number.
Then, the mantissa are added or subtracted
The resulting representation is rescaled so that its mantissaliesin therange 0.5 to 1.
Eg: Add (3.0)10 & (0.125)10
(30)10  =2"°X0.1100= r2xM,
(0.125)3p =2°©X 0.0010=r=xM,
Now adjust e, Such that e;=e,
(0.125)3, =2 X 0.0000100
Addition >2°° (0.110000 + 0.0000100) >2%%9 X 0.110010
Subraction >2”° X 1.001101
Comparefloating point with fixed point arithmetic.

S.No Fixed point arithmetic Floating point arithmetic
1 Fast operation Slow operation
2 | Relatively economical More expensive because of costlier hardware
3 | Small dynamic range Increased Dynamic range
4 | Round off errors occurs only for | Round off errors can occur with addition and
addition multiplication
5 | Overflow occur in addition Overflow does not arise
6 | Usedinsmall computers Used in large genera purpose computers.




Quantization:
*Discussthe various methods of quantization.
*Derivethe expression for rounding and truncation errors
* Discussin detail about Quantization error that occursdueto finite word length of registers.
The common methods of quantization are
1. Truncation
2. Rounding
1. Truncation
The abrupt termination of given number having alarge string of bits (or)
Truncation is a process of discarding all bits less significant than the LSB that is retained.
Suppose if we truncate the following binary number from 8 bitsto 4 bits, we obtain
0.00110011 to 0.0011
(8 bits) (4 bits)
1.01001001 to 1.0100
(8 bits) (4 bits)
When we truncate the number, the signal value is approximated by the highest quantization level that is
not greater than the signal.
2. Rounding (or) Round off
Rounding is the process of reducing the size of a binary number to finite word size of ‘b’ bits such that
the rounded b-bit number is closest to the original unquantised number.
Error Dueto truncation and rounding:
While storing (or) computation on a number we face registers length problems. Hence given number is
guantized to truncation (or) round off.
i.e. Number of bitsin the original number is reduced register length.
Truncation error in sign magnitude form:
Consider a5 bit number which has value of
0.11001, - (0.7815)10
This 5 bit number is truncated to a4 bit number
0.1100, - (0.75)10
i.e. 5bit number ->0.11001 has ‘I’ bits
4 bit number —>0.1100 has ‘b’ bits
Truncation error, & = 0.1100-0.11001
= -0.00001 - (-0.03125)1
Here original length is ‘I’ bits. (I=5). The truncated length is ‘b’ bits.

Thetruncation error, & = b1
= -(2-29
a = (%2 = 2
The truncation error for a positive number is
-(2"’-2")£eI £0 - Non causal
The truncation error for a negative number is
of£e £(2°-2") > Causdl

Truncation error in two’s complement:
For a positive number, the truncation results in a smaller number and hence remains same as in the case
of sign magnitude form.
For a negative number, the truncation produces negative error in two’s complement

-(2*-2")£e £ (2°-2")




Round off error (Error dueto rounding):

Let us consider a number with original length as ‘5’ bits and round off length as ‘4’ bits.

0.11001 %.998Y%® 0.1101

2°- 2!

2
Where ~ b->Number of bitsto the right of binary point after rounding

L->Number of bitsto the right of binary point before rounding
Rounding off error for positive Number:
2°. 2!

Now error due to rounding e, =

£e £0

Rounding off error for negative Number:
2—b_ 24
Ofe £ ———

For two’s complement

2.2 2.2
£ C° et
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Quantization Noise:
*Derivethe expression for signal to quantization noiseratio
*What is called Quantization Noise? Derive the expression for quantization noise power.
A/D converter
x(t) t=nT x(1)

, Xy(n)
- Sampler ——+| Quantizer |[—+——»

The analog signal is converted into digital signal by ADC

At first, the signal x(t) is sampled at regular intervals t=nT, where n=0,1,2... to create sequence x(n).
Thisis done by a sampler.

Then the numeric equivalent of each sample x(n) is expressed by a finite number of bits giving the
sequence Xq(Nn)

The difference signal e(n)= x4(n)- X(n) is called quantization noise (or) A/D conversion noise.

Let us assume asinusoidal signal varying between +1 & -1 having a dynamic range 2

ADC employs (b+1) bitsincluding sign bit. In this case, the number of levels available for quantizing

x(n) is 2°*%,

Theinterval between the successive levelsis
_ 2 _ 0

q= o 2

Where q > guantization step size

If b=3 bits, then q=2°=0.125
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Quantization Noise power :
Input Quantization error:
*Derivethe equation for quantization noise power (or) Steady state | nput Noise Power .

X1l X1 = m— Y _
—» Sampler | ——|Quantizer—-»| encoder |,




Probability density function for round off error in A/D conversion is

9

xfr)
&—( Sampler - xgfn}=x{r)+efn)

2T 2

&

If rounding is used for quantization, which is bounded by - —£e(n) > , then the error lies between

e(n)

- gto %with equal probability, where g quantization step size.

Properties of analog to digital conversion error, e(n):

1. Theerror sequence &(n) is a sample sequence of a stationary random process.

2. Theerror sequence is uncorrelated with x(n) and other signals in the system.

3. The error is a white noise process with uniform amplitude probability distribution over the range of
guantization error.

The variance of e(n) is given by

SRl = (1)) =5 () — >(1)
Where Ele?(n)|>Average of €(n)
E[e(n)] >Mean value of e(n).
For rounding, e(n) lies between - %and gwith equal probability
Ele?(n)] = 092 n)p(e)de >(2)
_1.a L
ple)=7 - Z EeES >(3)

Substituting (3) in (2)

q
E[e2 (n)] = é z‘jaz (1) [0 S ->(4)
Ele(n)] =0 2
E[en)] =0 >(5)

Substituting (4) and (5) in (1)
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qé3(a
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_1%H6 = qol
—_g;_f - Q' —— L,j
30g20 € 2g4y
160 & g*w
:_?I_ g_ q_:l,.l
8y & 8y
Z 3 s 3 TR
308y &8 g
_1éq’u
39¢€ 8 g
_9
Y — ->(6
e =12 (6)
al 1 — n-b
In general, PO 2°=q--- --->(7)
-b 2
o)
¢ 12
2-2b
S2 = e >(8
¢ T 8
Equation (8) is known as the steady state noise power due to input quantization.
R . , .
=— - intwo’s complement representation.
2
R — . , .
q= ».1 -> insign magnitude (or) one’s complement representation.
R - Range of analog signal to be quantized.

Steady state Output Noise power :

x(1) x(n) X0

: = = — Output Noize Power
— s Sampler F—S|Quantizer—| encoder

Processor —

¥

After quantization, we have noise power s Zas input noise power. Therefore, Output noise power of system is
given by

>(9)

where h(n) = impulse response of the system.
Let error E(n) be output noise power due to quantization
Error E(n) = e(n)* h(n)
¥
=a h(n)e(n- k)

=
Il

0




The variance of error E(n) is called output noise power, s Z.
By using Parseval’s theorem,

2

s2 =524 1(n)

— 2_i\ -1d_Z
_Se 2pJ@_|(Z)H(Z ) z

Where the closed contour integration is evaluated using the method of residue by taking only the poles that
lie inside the unit circle.

Z transform of h(n), H(z)= 5 h(n)z "
n=0
Z transform of h?(n) = Z[h*(n)] = 5 h?(n)z " = 5 h(n)h(n)z " -----------meeem- >(10)
n=0 n=0
By Inverse Z transform, h(n) = 2—;@4 74 PALL )7 AR >(11)
Substituting (11) in (10)
AR =8 L oH(2)z™dz hin)z"
n=0 n=0 2pJ
1 ., \64 L0
=—¢H(2)aa h(n)z* gz
2 €n=0 u
3 1 és udz
h2 nj=—- M (Z )aq h 1
&)= L () g2
v .
= L J(2)4 nn)z) 'z dz]
2p] -0 u
8 h(n) = Y ] L —— >(12)

Substituting (12) in (9)

Problem:

The output signal of an A/D converter is passed through a first order low pass filter, with transfer

function given by

H(2) =@ forO<a<1. Find the steady state output noise power due to quantization at the
z-a

output of the digital filter. [Nov/Dec-2015]

Solution:

2
e

2 1 hY -1 -1
S, =s, —pH(2)H(z )z 'dz
2pj ©

(1- a)z H(Z_l) - (1-la)z'l
(z- a) zZ - a
Substituti ng H(z) and H(z ') in eguation (1), we have
posdg-alzla)t L st (e @
2pj J(z- a) (z -a) 2pj S (z- a) (z -a)

Given H(2 =

S




:sezgresidueof H(z H(z ')z 'at z=a +residueof H@ H(z )z atz=

Q|-

oo

khkkhkkkkhkhkhkkhkhkhkhkhkhhhhhhhhhhhhkhkhhhhhhhhhhdhhkhkhhhhhhhhhhkhhkhkhhhhhhhhhhdkhhhhhhhhhhdhkdkdddhdxkkxx%

Find the steady state variance of the noise in the output dueto quantization of input for thefirst order

filter.

y(n) = ay(n- 1)+ x(n)

Solution:
The impul se response for the abovefilter is given by h(n) =a"u(n)

a
sf=s28 h?(n)
k=

o

Zg 2n
=s’gq a
k=0
=sigl+a’+at+. ¥y
1
=g?
€1- a?
-2b < N
:2 g 12",1 (or)
12 8- a’H

Taking Z-transform on both sides we have
Y(z) =az 'Y(z) + X (2)

H(z):Y(Z): 1_12 z
X(z) 1- az zZ- a
H(zY) = -2
zZ - a
We know

s{ =s? %@H (2H(zY)z'dz

Substituting H(z) and H(z ") values in the above equation we get

-1
s =s; l-@ : f Z'dz
j.z-az -a
-1
Si2 =Sez 1@ Z _ .
2] (z-a)(z" - a)
é -1
gesidue of —————
Y- (z- a)(z*- a)
‘e z*
grresdue of ——————
e (z-a)(z"- a)
z! u

é
=s’z-a)——
8 (z- a)(z*- a)|,._.q

N
|
QD

at z=1/ay

oooooc




khkkkkkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhhhkhkhkhkhkhhhhkhhhhkhkhkhkhkhkhhhkhhhhhhkhkhkhkhkhhkhkhkhhhhkhkhkhkhkhkhkhkhkkhhhkhkhkhkhkhkhkkkkkk*x*%

The output of the A/D converter isapplied to adigital filter with the system function
0.45Z
Z-0.72
Find the output noise power of the digital filter, when theinput signal is quantized to 7 bits.
Given:

H(z)=

H(Z): 0.457
Z-072
Solution:
_ 0.45Z , 045z , 71
Z-072 Z*-072

H(z)H(z )z

04527

(z- 0722 - 0722
eZ o

0.20252°*
(z- 072 MQ
e Z o

0.20252°'Z
(z-072%&- L0
e 0.72g

- 0.28125

~(z- 0.72)(z - 1.3889)
Now the poles of H(Z)H(Z )z are p;=0.72 , p,=1.3889
Output noise power due to input quantization

s2=s jgi_w(z)H(Z'l)Z'ldzg
&20) i

=s jéN RegH (2)H(z ")z "]

i=1

z=p

=528 RedH(2)H(z )z ]

i=1

Z=p;
Where p.p,.....pnare the poles of H(Z)H(Z™) Z™* that lies inside the unit circle in z-plane.
s2 =52 (z-072) - 028125 |
(- 0.72)(z - 1.3889) ,._, .,
,. - 0.28125
=s -/
® 0.72- 1.3889
= 0.4205s 2
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Consider the transfer function H(z) = H,(2)H,(z) where H,(2) = —and H,(2) = ! 5
1- az 1- a,z




Find the output round off noise power. Assume a, =0.5and a, = 0.6 and find output round off noise

power.
Solution:

The round off noise model for H(z) = H,(z)H ,(z) is given by,
From the realization we can find that the noise transfer function seen by noise source e;(n) is H(z), where,

1
H(ZD)=+——y————y- - - = - = = = = = = = = m oo - o - - - 1
O e N a) ®
Whereas, the noisetransfer function seenby e,(n)is,
1
H(Z2)=4+———------ -« ““““««+«-“------- 2
2( ) 1_ aZZ 1 ( )
The total steady state noise variance can be obtained, we have
Sy =S HS g m e e e e €
2 1 AN -1y -1
Sy =— 2)H(z )z dz
o = ooy HHOHEY
_ ezi.él 1.1 1_1 1 1 7 dz
20 J1-az°1-a,z7 1- az1- a,z
=sezgé of residueof H(2)H(z')z" at polesz=a,,z= az,zziand zzig
e a a(

If al and a2 are less than the poles z=1/a; and z=1/a, lies outside of the circle |Z| =1.So0, the residue of H(z) H(z")
'at z=1/a, and z=1/a, are zero. Consequently we have,
s> =& of residueof H(AH(z )z ' at polesz=a,, z=a,

=g(z_a1\ z’ | +(z- a,) z | ﬂ
& - a2t - 8,2 )1- a2)1- a22)|Z:al “l1- a2 1- a,zt)1- a,z)1- a22)|z:a2[§|
¢ 0
é a
=S 2@ 1 + 1 u
S?' 2 %(1' azz)(l' aiaz) ?—' &%1' aiaz)(l' azz)fl
s g &g Q
2 _ zé eH 1 1 + a, 1 1 U ______________ 4
So Segai-azll- a’ 1-aa, a,-a 1-a,° 1- aiaZH )
In the same way,
s’ . L
5022 = 251 ?"2(2)H2(Z Yz 'dz
=Sez 5t L s
2pj ?l a,z'1- a,z
:sezgz— a,) _Zl_l | 3
g l-az'fl-a7),, g
é -1 u
=s./8z- a,z" z | u
g( 2 )(1 a,z*)1- a,2) iy
é 1 u
R 1 R (5)
él' azzg




2 26 1 1 1 1 1 U
Sy, =S. & 2+al€-i1a2.]_- aizll- ala2+aza:2a1.l_ azzll- alazg
£ 1 af-a’)-a’ll-a7) @
&-a° [-a’fi-a’Ji- ag)a - &)
22 1 o ‘(al- az)(l"'alaz)

&-a’ [-a’fi- 8" [L- aa,)a, - a,)
- + (t+aa,) u

12 @-a; [1-a’Ji- a,°Ji- aa,)d
The steady state noise power for a, = 0.5,a, = 0.6is given by

SONC S

N
N
o
> (D
H

c

o é 1 . 1+ (05)(06) y
- 12 &- (067 [1- (057 J1- (067 )a- 0.6(0.5))

2-2b
=05 (5.4315)

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k 3k %k >k 3k %k 5k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k >k 3k %k 3k 3k 3k 3k 3k 3k %k >k 3k 3k 3k %k 3k %k 3k 3k 3k 3k %k 3k %k 5k 3k %k 3k %k 3k %k %k 3k %k 5k kk kk

1
1- 2rcosqz t +r°z

and find the

Draw the quantization noise model for a second order system H(z) = 5

steady state output noise variance.
Solution:
Given:

1

H(2)= 1- 2rcosqz ! +r%z?
The quantization noise model is,
weknow, s’ =s,°+s,,’
Both noise sources see the same transfer function
1
H(z)= 1- 2rcosqz ' +r%z?
The impulse response of the transfer function is given by

() = v SOy
sing

Now the steady state output noise varianceis,
2 _ 2 2
S 0o S 01 *S 02
2 2 2 g . .
But S, =S, =S, a h’(n), whichgivesus

n=-¥




-2b ¥ 2
P S P LUk
12 5 sin“q
27 1 é r?[1- cos2(n+1)g] \ cos2q =1- 2sin’qg
12 2sin’q o
2% 1 é4 L. &, u
= re" r<"cos2(n+1qy;
6 2sn°q &, f’}o (nrday
2* 1 é 1 3 | o
- g r e]2(n+1)q + r2ne-]2(n+l)q 22
6 2sin?q &l- r? g?o na:O i
_2® 1 €1 1meM | e W
6 2sin?q gl- r2 2%1 2?1 rPe? %
2% 1 1 cos2g-r? U

é
6 2sin’q &l- 2 1- 2r2cos2q +r4LJ
é (1+r)*(1- cos2q) U
6 2sin’q g- r’){L- 2r’cos2q + 1)y
2% (L+r)
6 (1-r?J1- 2r2cos2q +r*)
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Co-efficient quantization error
We know that the IIR Filter is characterized by the system function
M
o] -
abz’
— k=0
H (Z) - Iy )
1+a a.z

k=1
After quantizing,

A,z
[H(z)], == ——

1+3 [a],2"
k=1

Where [ak]q =a, +Da,
[bk]q =b, + Db,

The quantization of filter coefficients aters the positions of the poles and zeros in z-plane.

1. If thepolesof desired filter lie close to the unit circle, then the quantized filter poles may lie outside

the unit circle leading into instability of filter.

2. Deviation in poles and zeros also lead to deviation in frequency response.
khkkhkkkhkkhkkkhkhkkhkkhkhhkkhkkhkhkhkhhkkhkhkhhkkhkhhkhkhkhhkhkhkhkhkkhkhhkkhkhkhkhkhhkhkkhkhhkkhkhkhkhkkhkhhkkhkkhkhkkhkhkkhkkkhkkhkkkhkk,kk,*x**%x
Consider a second order IR filter with ;) - _11-0 _ find the effect on quantization

(1- 0.5z2°%)(1- 0.45z°%)
on polelocations of the given system function in direct form and in cascade form. T ake b=3bits.
[Apr/May-10] [Nov/Dec-11]
Solution:
Given that,

H(z) =

1.0
(1- 0.527Y)(1- 0.45z° 1)




1
z'(z- 0.5zY)z%(z- 0.5)
22

~ (z- 05)(z- 0.45)
The roots of the denominator of H(z) are the original poles of H(z). let the original poles of H(z) be p; and
P2.

Here p;=0.5 and p,=0.45
Direct form I:

H(z)=

H(2) =

1.0
(1- 0.5z')(1- 0.45z°")
1
1- 0.5z"'- 0.45z ' +0.225z- 2
_ 1
1- 0.952 " +0.2257°2
Let us quantize the coefficients by truncation.

H(2) =

Convert to Truncate to Convert to

9519 111, s 111, > .87510
Binary 3-hits decimal

Convert to Truncate to Convert to

22519 > 0011, .001, 1259
Binary 3-bits decimal

Let H(z) bethetransfer function of the IIR system after quantizing the coefficients.

— 1

H(z) =

(2) 1- 0.875z ' +0.125z*
et H(z) =2 - :

X(z) 1- 0.875z*+0.125z2
On cross multiplying the above equation we get,
Y(2)- 0.8752'Y(2) +0.1252 %Y (2) = X(2)
Y(2) = X(2) +0.875z2 'Y (2) - 0.125Z %Y (2)
Cascade form:
Given that

H(2) = 1.0

(1- 0.5z Y)(1- 0.45z' %)

In cascade realization the system can be realized as cascade of first order sections.
H(z)=H1(2)+H2(2)

Where,
H(2)=— and H,(z) = ——
1- 0571 2 1- 0.45z7°1
Let us quantize the coefficients of H1(z) and Hx(z) by truncation.
Convert to Truncateto Convert to
.510 10002 E— .1002% .510
Binary 3-bits decima
Convert to Convert to Convert to
.4510 E— .01112 —_— .0112%.37510
Binary 3-bits decima

let, H,(2) and H,(2) bethetransfer function of the first-order sections after quantizing the coefficients.




H.(z) =
/2 1- 0.5z
— 1
H,(2)=————
2(2) 1- 0.375z1
|et,H_1(Z):Y(Z) - 1 _
X(2 1-0.5z

Y,(2)- 052Y,(2) = X(2)

Y.(2) = X(2)+052%,(2)

Y@ _ 1

Y,(2) 1-0.375z*

on cross multiplying the above equation we get,
Y(2)- 0.3752'Y(2) = Y,(2)

Y(2) =Y,(2)+0.3752 'Y (2)
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Round off effectsand overflow in digital filter:
*Explain in detail about round off effectsin digital filters.
- The presence of one or more quantizer in the realization of adigital filter resultsin anon-linear device.
i.e. recursive digital filter may exhibit undesirable oscillations in its output
In the finite arithmetic operations, some registers may overflow if the input signal level becomes large.
These overflow represents non-linear distortion leading to limit cycle oscillations
There are two types of limit cycle oscillations which includes
1. Zeroinput limit cycle oscillations (Low amplitude compared to overflow limit cycle oscillations)
2. Over flow limit cycle oscillations.
Zero input limit cycle oscillations
The arithmetic operations produces oscillations even when the input is zero or some non zero constant
values. Such oscillations are called zero input limit cycle oscillations.
Overflow limit cycle oscillations
The limit cycle occurs due to the overflow of adder is known as overflow limit cycle oscillations.
Dead Band:
The limit cycle occurs as a result of quantization effect in multiplication. The amplitude of the
output during alimit cycleis confined to arange of values called the dead band of the filter.

let,H,(2) =

2-b
2
y(n- )£ )
Consider afirst order filter
y(n) = ay(n- 1)+ x(n); n>0

After rounding the product
yq(n)=Qla* y(n- )]+ x(n),
The round off error
-b -b
- 2_ £ er £ 2_
2 2
where, e —>difference between the quantized value and the actual value.

2- b
Qlay(n- 1)- ay(n- 1)]£ T3
The dead band of thefilter for the limit cycle oscillations are

_1¥-9) a>0
Qlay(n- 1) = %_yy(n_ 1) a<0




Y- ] - alytn- £ -

y(n- 1) i- |aj)£%

2—b
2

Dead band of thefilter, |y(n- 1) £ (—)

LR R R e R R R R e R e e R e R R R R R e ek e b Rk o e R e R R R R R e e ek e b R R R e

1-[4

Problem: Consider a 1% order FIR system equation y(n) = x(n) + ay(n - 1) with

j0.875 , n=0
x(n) = .
10 , Otherwise
Find the limit cycle effect and the dead band. Assume b=4 and a=0.95. (Nov/Dec-12)(Nov/Dec-15)
[May/June-2016]
Solution:
Given:
j0.875 , n=0
x(n) = .
10 , Otherwise
2-b 2-4
Dead band = = =0.625
2 Jd) 2 0.9
y(n) = x(n) +0.95y(n- 1)
Qlay(n- )]
n | x(n n-1 ay(n-1 n) = x(n) +Qlay(n- 1
(M | ¥(n-D y(n- 1) coundoff toasitg | Y =X+ Qay(n- ]
0| 0.875 0 0 0.0000 y(0)=0.875
0.875* 0.95 (0.1101)
1] 0 0.875 = (0.83125),, :02'3125 2 y(1)=0.8125
=(0.11010), m
0.8125* 0.95
2| o | osizs | =(077187), :5)0'715100)2 y(2) =0.75
= (0.110001), e
0.75* 0.95
3| o | o7 = (0.7125),, = (0.1011), y(3) = 0.6875
= (0.1011011), = 0.6875
0.6875* 0.95
4 0 | 06875 | =(0.653125), :530612%10)2 V() = 0.625
= (0.101001), e
0.625* 0.95
5| 0 0.625 =(0.59375),, ~ 5)0612%10)2 y(5) = 0.625
= (0.10011), e
0.625* 0.95
6| 0 | 0625 = (0.59375),, i 206120510)2 y(6) = 0.625
= (0.10011), e

Conclusion:




The dead band of the filter is 0.625. When n 3 5the output remains constant at 0.625 causing
limit cycle oscillations.
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Overflow Limit cycle oscillations:

*What are called overflow oscillations? How it can be prevented?
We know that the limit cycle oscillation is caused by rounding the result of multiplication.
The limit cycle occurs due to the overflow of adder is known as overflow limit cycle oscillations.\
Severa types of limit cycle oscillations are caused by addition, which makes the filter output oscilate
between maximum and minimum amplitudes.
Let us consider 2 positive numbersn; & np
ni=0.111->7/8
n,=0.110->6/8
n; + Nn2=1.101->-5/8 in sign magnitude form.
The sum iswrongly interpreted as a negative number.
The transfer characteristics of an saturation adder is shown in fig below

where n - The input to the adder
f(n) > The corresponding output
4 S
7

______ <

Saturation adder transfer characteristics
From the transfer characteristics, we find that when overflow occurs, the sum of adder is set equal to the
maximum value.

khkkhkkkhkhkkkhkkhkkhkkhkhhkkhkkhkhhkkhkhhkhkkhkhhkhkhkhhkkhkhhkhkkhkhhkhkhhkhkkhkhhkhkhkhkhhkhkhhkhkkhkhhkhkhkhkhkkhkhhkkhkkhkhkkhkkkhkkkkkk*x*%

Signal Scaling:
Explain how reduction of round-off errorsisachieved in digital filters.

Saturation arithmetic eliminates limit cycles due to overflow, but it causes undeniable signal distortion
due to the non linearity of the clipper.

In order to limit the amount of non linear distortion, it is important to scale input signal and unit sample
response between input and any internal summing node in the system to avoid overflow.

1)
A

I bl

vl win)
} @ (=™ @ =

ay b

-a =

x{n}

Realization of a second order IR Filter
Let us consider a second order IIR filter as shown in the above figure. Here a scale factor & is

timbvAaAi iAand lhabisrmanan thaa timmn e A AnA A AAA A 1 A v rAand AvrArfl A A A AL AR AAA A 1




Now the overall input-output transfer function is

Now the transfer function

b, +b,z " +b,z?
1+a,z " +a,z?
_< N(®
7' D()

H(z) =S,

From figure
H'(Z):W(Z): ?0 — = SO
X(z) l+az +a,z D(2)

_SX(2
D(2)

W(2) =$S(2)x(2)

WhereS(z) = ﬁ

wehave
w(n) :%GS(e“)X(eiq)(em)dq
S

2__
w(n) 2

OS(e™)X (€)(e™) dq|

Using Schwartz inequality

w(n) £ S oy, [S(e” )[ dg 0 X (e )| dg ;
Applying parsevals theorem

w(n) 2£ sgéo xz(n)%@pﬁ(ei‘wr dq

if z=e" then dz= je" dq

which gives
dq =£
iz

By substituting all values
¥
w(n) %€ S28 x2(n)——— |s(2)f 2z
n=0 2p J
¥
w(n) 2£ S2§ xz(n)%(‘)cS(z)S(z'l)z'ld z
n=0

¥
w2(n) £ § x3(n) when
n=0

1
2_— A S(2)S(zYH)dz=1
S°2pja (2)S(z7)

Which gives us,




=g d
— 0,828z ) z*
2 OS82 d2

1
1 . zldz
20 @ D(2)D(z7)

1
2 —_——
% |
Where |=
1 J' z 7z
2 il C Dz Dz ™
Note:
Because of the process of scaling, the overflow is eliminated. Here so is the scaling factor for the first
stage.
1

Scaling factor for the second stage = Sp; and it isgiven by SZ, = =N
0"2

-1)5-1
Where|2=i \Hl(Z)Hl(Z )Z

201 © D,(z)p,(z "
c 2 2
3k 3k 3k sk 3k sk 3k sk 3k sk 3k sk >k sk sk 5k sk 3k sk 5k sk 5k sk 5k sk 3k sk 3k 3k 3k sk sk 5k >k 3k sk 5k sk 3k sk 5k sk 3k sk 5k sk 3k 5k 3k 5k >k 3k sk 5k >k 3k sk 5k sk 3k sk 5k sk >k 3k >k sk 3k 5k >k 5k >k 5k >k 5k sk ok sk >k sk %k 5k %k %k %k %k kkkok k ok

_ 025+ 07z*
1- 052"

dz

For thegiven transfer function, H (Z) , find scaling factor so asto avoid overflow in

the adder ‘1’ of the filter.

xm) A~ 1 0.25 { ) y(n)
> - T
Sn L =

0.866
-ay by
0.5 0.7
Given:
D(z) =1-05z*
D@z =105Z
Solution:

1. 1 dz

20j % (z)p(z?) z

_ 1 1 daz
2pj A1- 052°1)1- 052) Z
15 Z 1 dz
20/ 9z - 05){t- 052) Z
Residue of % SN
(z- 05) (- 052),_,.
1=1.3333
S,= 1

-




< 1
° 1333
= 0.866

khkkhkkkhkhkhkkhkhkhhhkhhkhhkhkhhkkhhhkhhhkhhhhhhhhhhhhhkhhhhhhhhhhhhhkhhhkhhhhhhhdhhhdhhhkhhdhkhhkhhdkhhdkkkdxdxkx%

Consider therecursivefilter shown in fig. Theinput x(n) has a range of values of 100V, represented
by 8 bits. Computethe variance of output dueto A/D conversion process. (6)

i Jl st ¥in)
=+ - -
‘\_< 0s s
Solution:

Given the range is £100V
The difference equation of the systemisgivenby | ) - 0.5y(n- 1)+ x(n) » Whose impulse response h(n)
can be obtained as
h(n) = (0.8)"u(n)
rangeof the signal
No.of guantization levels

guantization step size =

_ 200
=
=0.78125
Variance of the error signal
:o 8
¢ 12
_ (0.78125)7
12
s 2 =0.05086

Variance of output

s =s2q h*(n)
n=0

- (0.05086)4 (0.8

n=0

- 005086 _ ) 14108

" 1- (0.8)?

khkkhkkkkhkhhkhkhkhkhkhkhhhhhhhhhhhhkhkhhhhhhhhhhhhkhkhhhhhhhhhhhhkhkhhhhhhhhhkhdkhkhhhhhkhhhhkhkdkdkrhhkkkkkxdx%

The input to the system y(n)=0.999y(n-1)+x(n) is applied to an ADC. What is the power produced by
the quantization noise at the output of thefilter if theinput is quantized to a) 8 bits b)16 bits. May-07
Solution:

y(n)=0.999y(n-1)+x(n)
Taking z-transform on both sides
Y (2)=0.99921Y (2)+X(2)

Y (2) _ 1

H(2)= X(z) 1-0.999z"




-1
H(z)H(zYz'= Z z
(2R () (Z- 0.999)(2"1- 0.999

-1

)z

_ Z
- 1
z- 0.999)(- 0.999)(z- ——
( )( )( 0_999)
- 0.001

~ (z- 0.999)(z- 0.001)

output noise power due( ,

1
s?2 =g2_~ AH(2)H(z Yz dz
to input quantization g ol =20 ] 9 (2)H(z7)

=s’? 3y ResgH (2)H (z'l)z'la|
i z=p

-

=528 &z= p)H(H (zHz2 Y
i=1 z=p;
Where py,ps,......pn are poles of H(z)H(z)z?, that liesinside the unit circle in z-plane.

0.001
(z- 0.999)(z- 0.001)

S 2 =S (z- 0.999)(

e

)

2=0.999

=5 _,500.25

a) b+1=8 bits(Assuming including sign bit)

2(7
2:2()

Se
12

(500.25) = 2.544" 103

b)  b+1=16 bits

2(15
) 2()

© T 12
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(500.25) = 3.882" 10°°

Find the effect of coefficient quantization on pole locations of the given second order 11R system, when
itisrealized in direct form | and in cascade form. Assume aword length of 4 bitsthrough truncation.

1
H(z) =

(2) 1- 0.9z'+0.2z2?
Solution:
Direct form |

Let b=4 bitsincluding asign bit




(0.9),, = (0.111001...),
Integer part
09" 2

1

.8
- 1
0.8" 2
1.6
N

06" 2
1.

NT

0.2" 2

N o
NN
o

04" 2

.8

- 0
8" 2

1.6

o

0.

1

After truncation we get

(0.111)2:(0.875)10

(0.2)10=(0.00110...),
02" 2

0.2),, =——

(02 ==

— 0
04" 2
08
— 0
08" 2
16
N
06" 2
12
— 1
02" 2
04
- 0
After truncation we get
(0.001),=(0.125)19
The system function after coefficient quantization is

1
H(z) =
(2) 1- 0.875z ' +0.125z°2

Now the pole locations are given by
2,=0.695
2220.178

If we compare the Poles of H(z) and H (z) we can observe that the poles of H (z) deviate very much from
the original poles.

Cascade form
1
H(z) =
& 1- 0.5z*'(1- 0.4z%)
(0.5),, =(0.1000),

After truncation we get




(0.100) 22(0.5) 10
After truncation we get
(0011)2:(0375)10

(0.4),, = 252
- 0 N
0.8" 2
1.6
- 0
0.6° 2
1.2
= 1
0.2° 2
0.4
= 1
0.4° 2
0.8
— 0

(0.4)10=(0.01100...),
The system function after coefficient quantization is
1

H(z) = = =
(1- 0.5 %)(1- 0.375z'%)

The pole locations are given by
21:0.5
2,=0.375
on comparing the poles of the cascade system with original poleswe can say that one of the polesis same
and other poleisvery closeto origina pole.
kkhkkhkkkkhkhkkkkhhkkhkkhhkhkkhhkkkhkhhkkhkkhhkhkkhkhhkhkhhkhkhhhkkhkhhkhkkhhkhkkhkhhkhkkhhkhkkhkhkhkhkhhkhkhhkkhkhhkkhkhhkkhkkhkkkhkkhkkkhkkkkkkkkkk,k*x*%
A LTI system ischaracterized by the difference equation y(n)=0.68y(n-1)+0.5x(n).
Theinput signal x(n) hasarange of -5V to +5V, represented by 8-bits. Find the quantization step size,

variance of theerror signal and variance of the quantization noise at the output.
Solution:

Given

Range R=-5V to +5V = 5-(-5) =10

Size of binary, B= 8 bits (including sign bit)
Quantization step size,

R 10
g= = = > =0.0390625
2 2
varianceof error signal,s ez =9 - M =1.27116*10*

The difference equation governing the LTI system is
Y (n) =0.68y (n-1) +0.15x (n)
On taking z transform of above equation we get




Y(2) =0.682'Y(2) +0.15X(2)
Y(2)- 0.68z Y (2) =0.15X(2)
Y(2)[1- 0.682'] =0.15X(2)
Y(z) _ 015
X(z2) 1-0.68z"
H=Y@ 015 §
X(z) 1-0.68z

H@H(z Yzt =015 . 015 , .
1- 068z 1- 0.68z

-1
H@H (22 = 0.2252 —
-~ Y-068)82- 2
€ z ia( ) & 068;
HH(z Yz e 00831z  _  -003317°
ga— 0.68 8(2- 1.4706) (z- 0.68)(z- 1.4706)
Z @

Now, polesof H (z) H (z*) z* are p;=0.68, p,=1.4706
Here, p;=0.68 isthe only pole that liesinside the unit circlein z-plane
Variance of the input quantization noise at the output.

1
2_= 2 H H -1 -ld
S & Se—zpj@ (29H(z ")z "dz

N
s2=s23 gReﬁH(z)H(z'l)z'lq
=1 z=pi

N
2

S&H=s.d dz- D.)H(Z)H(Z'l)Z'lE{
i=1 z=pi
s2 =s?(z- 0.68)* -00331
(z- 0.68)(z- 1.4706)
s2 :sj*ﬂ =0.0419s
(0.68- 1.4706)
s’ =0.0419%1.2716*10"

s2 =5328*10°

z=0.68




Analog to digital conversion:

| 10. Explain the ADC and DAC in detail.

A/D conversion has three process.

1.

2.

3.

A/D converter

r :

x (1) x(rn) _r T in) 4 01011
T Sampler : Quantizer i Coder —
| |
R T

Analog Discrete-time Quantized Digital
signal signal signal signal
Basic parts of an analog-to digital (A/D) converter
Sampling

Sampling is the conversion of a continuous- tome signal into a discrete-time signal obtained by taking
the samples of continuous-time signal at discrete instants.
Thus if x4(t) is the input to the sampler, the output is xa(nT)=x(n), where T is called the sampling
interval.
Quantisation
The process of converting a discrete-time continuous amplitude signal into digital signal is called
guantization.
The value of each signal sampleis represented by a value selected from afinite set of possible values.
The difference between the unquantised sample x(n) and the quantized output Xq(n) is called the
guantization error or quantization noise.

&(n)= xq(n)-x(n)
To eliminate the excess bits either discard them by the process of truncation or discard them by rounding
the resulting number by the process of rounding.
The values allowed in the digital signals are called the quantization levels
The distance A between two successive quantization levels is called the quantization step size or
resol ution.
The quality of the output of the A/D converter is measured by the signal -to-quantization noise ratio.
Coding
In the coding process, each discrete value xq(n) is represented by a b-bit binary sequence.

| Convert i
control | L—_: L._
Sample- AD 1 Buffer To Compuier of
— [ hedel COnYernesr E ar bus COMUMARIC AN
) chanmel
Analog |S
preamp Latus | : }

Block diagram of basic elements of an A/D Converter

Digital to analog conversion:

To convert adigital signal into an analog signal, digital to analog converters are used.

Digital Digital- Sampie Lowpass Analog
input ——= to-analog - and smoothing = output
signal converter hold filter signal




Basic operationsin converting a digital signal into an analog signal
The D/A converter accepts, at its input, electrical signals that corresponds to a binary word, and
produces an output voltage or current that is proportional to the value of the binary word.
The task of D/A converter is to interpolate between samples.
The sampling theorem specifies the optimum interpolation for a band limited signal.
The simplest D/A converter is the zero order hold which holds constant value of sample until the next
oneisreceived.
Additional improvement can be obtained by using linear interpolation to connect successive samples
with straight line segment.
Better interpolation can be achieved y using more sophisticated higher order interpolation techniques.
Suboptimum interpolation techniques result in passing frequencies above the folding frequency. Such
frequency components are undesirable and are removed by passing the output of the interpolator through
aproper analog filter which is called as post filter or smoothing filter.
Thus D/A conversion usually involve a suboptimum interpolator followed by a post filter.
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UNIT 5
MULTIRATE DIGITAL SIGNAL PROCESSING

INTRODUCTION

The process of sampling rate conversion in the digital domain can be viewed as
a linear filtering operation, as illustrated in Fig. 10.1(a). The input signal x(n)
is characterized by the sampling rate F;, = 1/T; and the output signal v(m) is
characterized by the sampling rate F, = 1/T.. where T, and T, are the corre-
sponding sampling intervals. In the main part of our treatment, the ratio F, /F, is
constrained to be rational,

£, f

F, 0
where D and [ are relatively prime integers. We shall show that the linear filter
is characterized by a time-variant impulse response. denoted as hin.m). Hence
the input x{n) and the output v(m} are related by the convolution summation for
lime-variant systems.

The sampling rate conversion process can also be understood from the point
of view of digital resampling of the same analog signal. Let x(s) be the ana-
log signal that is sampled at the first rate F, to generate x(n). The goal of
rate conversion is to obtain another sequence v(m) directly from x(n). which
is equal to the sampled values of x{¢) at a second rate F,. As is depicted in
Fig. 10.1(b), v(m) is a time-shifted version of x(n). Such a time shift can be

x(n) Linear filier | ¥(m)

————-] ——
Rase F, = hm | op =L
T, T,
(a}
T
wm+2)
x{n+2) x(me3)  x(nid) x(m+5)
x(n) x(m+1)

¥m+3) _/

ymid) yim+5)  p(me6)

(b)




DECIMATION BY A FACTOR D

Let us assume that the signal x(n) with spectrum X(w) is to be downsampled
by an integer factor D. The spectrum X(w) is assumed to be nonzero in the
frequency interval 0 < |w| < 7 or. equivalently, [F| < F,/2. We know that if we
reduce the sampling rate simply by selecting every Dth value of x(n), the resulting
signal will be an aliased version of x(n), with a folding frequency of F,22D. To
avoid aliasing, we must first reduce the bandwidth of x(n) to Fuqay = F:/2D or,
equivalently, 10 wms = n/D. Then we may downsample by D and thus avoid
aliasing.

The decimation process is illustrated in Fig. 10.2. The input sequence x(n) is
passed through a lowpass filter, characterized by the impulse response h{n) and a
frequency response Hp(w), which ideally satisfies the condition

1 || = mw/D

Hplw) = I{] otherwise (10.2.1)

Thus the filter eliminates the spectrum of X(w) in the range #/D < w < x. Of
course, the implication is that only the frequency components of x{n) in the range
|@| = 7 /D are of interest in further processing of the signal.

The output of the filter is a sequence v(n) given as

[=
vin) = Z hik)x(n — k) (10.2.2)
k=0
*(n) o vin) | Dﬂwﬁmﬂ“ ym)
Fo= _|_ l F F
T Tz L _ﬁ_

Figure 102 Decimation by a factor D.




which 1s then downsampled by the factor D to produce y(m). Thus
y(m) = v(mD)
= (10.2.3)
= Z hik)x(mD — k)
k=[]

Although the filtering operation on x(n) is linear and time invariant, the
downsampling operation in combination with the filtering results in a time-variant
system. This is easily verified. Given the fact that x(n) produces v(m), we note
that x(n — ng) does not imply v(n — ng) unless ng is a multiple of D. Consequently,
the overall linear operation (linear filtering followed by downsampling) on x(n) is

not time invariant.
The frequency-domain characteristics of the output sequence y(m) can be

obtained by relating the spectrum of v(m)to the spectrum of the input sequence
x(n). First, it is convenient to define a sequence v(n) as
vin), n=0+D £2D, .. .
0, otherwise

Clearly, #(n) can be viewed as a sequence obtained by multiplying v(n) with a
periodic train of impulses p(n), with period D, as illustrated in Fig. 10.3. The
discrete Fourier series representation of p(n) is

mm={ (10.2.4)

1 = i2mkn
pin) = - éeﬂ kn/D (10.2.5)
Hence
tin) = vin)pin) (10.2.6)
and
yim)=iv(mD}=vimD)p(mD) = v(mD) (10.2.7)

Now the z-transform of the output sequence y(m) is

i =}

Yiz)= Y ymz™

= =00

& u)

= 3 wmD)z" (10.2.8)

-

Y{z) = E o)z ™0

me—

where the last step follows from the fact that #(m} = 0, except at muitiples of D.
By making use of the relations in (10.2.5) and (10.2.6) in (10.2.8), we obtain

L - =




o0

1 o=t
Y(z) = Z vim) [E gfi*“"“ﬂ:rz-mfﬂ

= — s
1 n-1 i
— u{mw}{e—-jhrk.-'ﬂzlfﬂ}—m
7 ;"'"‘” 10.2.9)
1 b=l _ (10.2.
A Z V{e“f"’r””z””]
k=l
1 DZFI 2xk/D_1,D 2wk i _1/D
= — Hp(e BB K (e 1sm b8 1
D k=l

where the last step follows from the fact that V(z) = Hp(2) X (2).

By evatuating ¥(z) in the unit circle, we obtain the spectrum of the output
signal y(m). Since the rate of y(m) is F, = 1/T,, the frequency variable, which we
denote as w,, is in radians and is relative to the sampling rate F,,

2n F

¥

wy = =27 FT, (102.10)

Since the sampling rates are related by the expression

Fy
= — 211
Fy= (10.2.11)
it follows that the frequency vanables w, and
Wy = 2—;_-{ =2nFT, (10.2.12)
are related by
w, = Daw, (10.2.13)

Thus, as expected, the frequency range 0 < |w,| < n/D is stretched into the
corresponding frequency range 0 < |w,| < by the downsampling process.

We conclude that the spectrum ¥ (w,). which is obtained by evaluating (10.2.9)
on the unit circle, can be expressed as

1 e w, — 2wk w, — 2wk

With a properly designed filter Hp(w). the aliasing is eliminated and. consequently.
all but the first term in {10.2.14) vanish. Hence

Wy

Yiw.) = %Hﬂ (%)X (E)

1 Wy
= 5%(3)
for = jw.| = . The spectra for the sequences x(n), vin}, and v(m) are illustrated
mn Fig. 10.4.

(10.2.15}




INTERPOLATION BY A FACTOR /

An increase in the sampling rate by an integer factor of / can be accomplished
by interpolating [ — 1 new samples between successive values of the signal. The
interpolation process can be accomplished in a variety of ways. We shall describe
a process that preserves the spectral shape of the signal sequence x(n).

Let v(m) denote a sequence with a rate F, = I F.. which is obtained from
x(n) by adding [ — 1 zeros between successive values of x(n). Thus

xtm/l). m=0,+i +21..,.
a, otherwise

and its sampling rate is identical to the rate of v(m). This sequence has a :-
transform

vm) = (10.3.1)

Viz) = vim)z ™"

m-rzm

Y x(myz™ (10.3.2)
==
=X

The corresponding spectrum of v(m) is obtained by evaluating (10.3.2) on the unit
circle. Thus
Viwy) = X(w,]) (10.3.3)

where w, denotes the frequency variabie relative to the new sampling rate F, (i.e.,
w, = 2n F/F.). Now the relationship between sampling rates is F, = /F, and
hence, the frequency variables w, and w, are related according to the formula

wy = —= (10.3.4)

The spectra X (w.) and V(w,) are illustrated in Fig. 10.5. We observe that the
sampling rate increase, obtained by the addition of 7 — 1 zero samples between
successive values of x(n), results in a signal whose spectrum V{w,) is an I-fold
periodic repetition of the input signal spectrum X (a,).

Since only the frequency components of x(n) in the range 0 < w, < n//
are unique, the images of X(w) above w, = x /I should be rejected by passing
the sequence v(m) through a lowpass filter with frequency response H;(w,) that

ideally has the characternistic

C. 0 < lw,| =/l

). otherwise (10.3.5)

H,r fEtJl.! = {
where C is a scale factor required to properly normalize the output sequence y(m).
Consequentiy, the output spectrum is

CXiew,[). 0 <lenl =m/f (10.3.6)

Flwy) = {ﬂ, otherwise




The scale factor C is selected so that the output vim) = x(m/I) for m = (),
=1 +21..... For mathematical convenience, we select the point m = (. Thus

| .
yih = —f Yiw,dw,
I i ! !
C il
),

(10.3.7)

.X {ﬁ-’_r ! }dl‘.ﬂ\

Since w, = w, /I, (10.3.7) can be expressed as

_'!."l:ﬂ} = %EI; X{w Mo,
- (10.3.8)

= -f-x{l'.]}

Therefore, C = I is the desired normalization factor.
Finally, we indicate that the output sequence y(m) can be expressed as a
convolution of the sequence v(n) with the unit sample response h(n) of the lowpass

filter. Thus
= =)
yim)= Y him - k)y(k) (10.3.9)

k=—nC

Since vik) = 0 except at multiples of I, where v(k/) = x(k), (10.3.9) becomes

oo
yimy= " him~ki)x(k) (10.3.10)

k=0

SAMPLING RATE CONVERSION BY A RATIONAL FACTOR 1/D

Having discussed the special cases of decimation (downsampling by a factor D)
and interpolation (upsampling by a factor /), we now consider the general case
of sampling rate conversion by a rational factor I/D. Basically, we can achieve
this sampling rate conversicn by first performing interpolation by the factor / and
then decimating the output of the interpolator by the factor D. In other words, a
sampling rate conversion by the rational factor //D is accomplished by cascading
an interpolator with a decimator. as illustrated in Fig. 10.6.

We emphasize that the importance of performing the interpolation first and
the decimation second, is to preserve the desired spectral characteristics of x(n).
Furthermore, with the cascade configuration illustrated in Fig. 10.6, the two filters
with impulse response {h,(/)} and [h;(/)} are operated at the same rate, namely [ F,
and hence can be combined into a single lowpass filter with impulse response h(/)
as illustrated in Fig. 10.7. The frequency response H(w,) of the combined filter
must incorporate the filtering operations for both interpolation and decimation,
and hence it should ideally possess the frequency response characteristic




I, 0<|wl <min(n/D, z/I)

Hiw,) = fl], otherwise

(10.4.1)

where w, = F/F. =2nFj/IF, = w,/I.

x(n) ! Upsampler
Rate F; | i
i Interpol ator
Rate = JF;
Figure 10.6 Method for sampling rate conversion by a factor //D.
x(n) Upszmpler u(k) Lowpass w) | Downsampler | ¥om)

Rawe = F, \ hih D I
» Raie = EFA = F.

Rate = IF, = F,

Figure 10.7 Method for sampling rate conversion by a facter 1/D.

In the time domain, the output of the upsampler is the sequence

_jaugn. l=0 %/ 421 ..
vy = { 0. otherwise (0.4.2)
and the output of the linear time-invariant filter is
w(l) = 3 bl ~ Huk)
k=—oG
(10.4.3)

.
= Z hil = kIyx k)

k==
Finally. the output of the sampling rate converter is the sequence {v(m)}}, which is
obtained by downsampling the sequence {w(/)) by a factor of D. Thus
yim) = w(m D)

= (10.4.4)
Z hmD — kx(k)

=




It is illuminating to express (10.4.4) in a different form by making a change

in variable. Let D
k= {"‘TJ —n (10.4.5)

where the notation |r| denotes the largest integer contained in . With this change
in variable, (10.4.4) becomes

yim) = ,,.:Z:g h (mD - H—DJ I+ n!) x Q":—DJ - n) {10.4.6)

We note that D
mD — J_MTJ I=mD modulo

= (mD),
Consequently, (10.4.6) can be expressed as
= D
vim) = n;ﬂh(nf + (mD))x (‘_E‘J’_J — n) (10.4.7)

It is apparent from this form that the output y(m) is obtained by passing the
input sequence x({n) through a time-variant filter with impulse response

g(n.m) = h(nl + (mD);} —oc<m.n < oo (10.4.8)

where h(k) is the impulse response of the time-invariant lowpass filter operating
at the sampling rate } F,. We further observe, that for any integer &,

gin.m4+kl) = hinl +{mD 4+ kDI);)
= hinl + (mD);) (10.4.9)
= gln,m)

Hence g(n, m) 1s periodic in the variable m with period J.

The frequency-domain relationships can be obtained by combining the results
of the interpolation and decimation processes. Thus the spectrum at the output of
the linear filter with impuise response k() is

Viw,) = Hlw ) X{w, 1)

_ [1X@0), 0= <min@/D, /1) (10.4.10)
)0, otherwise

The spectrum of the output sequence y(m), obtained by decimating the sequence
v(n) by a factor of D, is

'::ll'-'

Yiwy) =

D —
2 ( y 2’”‘) (10.4.11)
=}

where w, = Dw,. Since the linear filter prevents aliasing as imphed by (10.4.10),
the spectrum of the output sequence given by (10.4.11) reduces to

I paw, ) D
Yw)={ D~ ("E)‘ 0% jwyl = min (”‘ T) (10.4.12)
0, otherwise




SAMPLING-RATE CONVERSION BY AN ARBITRARY FACTOR

o
In'the previous sections of this chapter, we have shown how to perform sampling
rate conversion exactly by a rational number //D. In some applications, it is either
inefficient or, sometimes impossible to use such an exact rate conversion scheme.
We first consider the following two cases.

Case 1. We need to perform rate conversion by the rational number //D,
where [ is a large integer (e.g., //D = 1023/511). Although we can achieve
exact rate conversion by this number, we would need a polyphase filter with 1023
subfilters. Such an exact implementation is obviously inefficient in memory usage
because we need to store a large number of filter coefficients.

Case 2. In some applications, the exact conversion rate is not known when
we design the rate converter, or the rate is continuously changing during the con-
version process. For example, we may encounter the situation where the input and
output samples are controlled by two independent clocks. Even though it is still
possible to define a nominal conversion rate that is a rational number, the actual

rate would be slightly different, depending on the frequency difference between
the two clocks. Obviously, it is not possible to design an exact rate converter in
this case.

To implement sampling rate conversion for applications similar to these
cases, we resort [0 nonexact rate conversion schemes. Unavoidably, a nonexact
scheme will introduce some distortion in the converted output signal. (It should
be noted that distortion exists even in an exact rational rate converter because
the polyphase filter is never ideal.) Such a converter will be adequate, as long
as the total distortion does not exceed the specification required in the appli-
cation.

Depending on the application requirements and implementation constraints,
we can use first-order, second-order, or higher-order approximations. We shall de-
scribe first-order and second-order approximation methods and provide an analysis
of the resulting timing errors.




10.8.1 First-Order Approximation

Let us denote the arbitrary conversion rate by r and suppose that the input to the
rate converter is the sequence {x(n}}. We need to generate a sequence of output
samples separated in time by T, /r. where T, is the sample interval for {x(n)}. By
constructing a polyphase filter with a large number of subfilters as just described,
we can approximate such a sequence with a nonuniformly spaced sequence. With-
out loss of generality, we can express |/r as

| S

;=1
where & and / are positive integers and # is a number in the range

1
ﬂ{ﬁ{}—

Consequently. 1/r is bounded from above and below as
k1 k41

- e ——
I r !

I corresponds to the interpolation factor, which will be determined to satisfy the

specification on the amount of tolerable distortion introduced by rate conversion.

I 1s also equal to the number of polyphase filters.

For example, suppose that r = 2.2 and that we have determined, as we
will demonstrate, that / = 6 polyphase filters are required to meet the distortion
specification, Then

k - 2 < 1 <> k+1

I~ 6 r 6 I
so that k = 2. The time spacing between samples of the interpolated sequence s
T./I. However, the desired conversion rate r = 2.2 for I = 6 corresponds to a
decimation factor of 2.727, which falls between k = 2 and k = 3. In the first-order
approximation, we achieve the desired decimation rate by selecting the output

sample from the polyphase filter closest in time to the desired sampling time. This
is illustrated in Fig. 10.27 for [ = 6.

In general, to perform rate conversion by a factor r, we employ a polyphase
filter to perform interpolation and therefore 1o increase the frequency of the orig-
inal sequence of a factor of /. The time spacing between the samples of the
interpolated sequence is equal to T, /1. If the ideal sampling time of the mth sam-
ple, y(m), of the desired output sequence is between the sampling times of two
samples of the interpolated sequence, we select the sample closer to y(m) as its
approximation.




- Let us assume that the mth selected sample is generated by the (i, )th subfilter
using the input samples x(n), x(n — 1),..., x(n — K 4+ 1) in the delay line. The
normalized sampling time error (i.e., the time difference between the selected
sampling time and the desired sampling time normalized by T,) is denoted by t,.
The sign of ¢, is positive if the desired sampling time leads the selected sampling
time, and negative otherwise. It is easy to show that |¢,| < 0.5/7. The normalized
time advance from the mth output y(m) to the (m + 1)st output y(m + 1} is equal
to (1/r) + tm.

To compute the next output, we first determine a number closest to iy /] +
1/r + ty + k /I that is of the form I,-y + im41 /], where both I,,; and iy, are
integers and i1 < J. Then, the (m + 1)st output y(m + 1) is computed using the
(im+1)th subfilter after shifting the signal in the delay line by .. input samples.
The normalized timing error for the (m + 1)th sample is tp41 = (/I + 1/r +1,) —
{(lm+1 + im41/7). It is saved for the computation of the next output sample.

By increasing the number of subfilters used, we can arbitrarily increase the
conversion accuracy. However, we also require more memory to store the large
number of filter coefficients. Hence it is desirable to use as few subfilters as possible
while keeping the distortion in the converted signal below the specification. The
distortion introduced due to the sampling-time approximation is most conveniently
evaluated in the frequency domain.

Suppose that the input data sequence {x(n)} has a flat spectrum from —aw,
10 w,, where w, < 7, with a magnitude A. Its total power can be computed using
Parseval’s theorem, namely,

Alw,

(10.8.1)

| O -,
P, =—f IX{e)dw =
2r J .,

APPLICATIONS OF MULTIRATE SIGNAL PROCESSING

There are numerous practical applications of multirate signal processing. In this
section we describe a few of these applications.

10.9.1 Design of Phase Shifters

Suppose that we wish to design a network that delays the signal x(n) by a fraction
of a sample. Let us assume that the delay is a rational fraction of a sampling

i{i}___.._ 2 Lowpass Dejay by ;o wial
F, ' IF, filter IF, k samples | IF, : 'F;

Figure 10.29 Method for generating a delay in a discrete-time signal.

interval T; [i.e..d = (k/])T., where k and [ are relatively prime positive integers].
In the frequency domain, the delay corresponds to a linear phase shift of the form

O(w) = J‘T‘” (10.9.1)

The design of an all-pass linear-phase filter is relatively difficult. However,
we can use the methods of sample-rate conversion to achieve a delay of (k/I)7,,
exactly, without introducing any significant distortion in the signal. To be specific,
let us consider the system shown in Fig. 10.29. The sampling rate is increased by a
factor ] using a standard interpolator. The lowpass filter eliminates the images in
the spectrum of the interpolated signal, and its output is delayed by k samples at
the sampling rate [ F,. The delaved signal is decimated by a factor D = |. Thus
we have achieved the desired delay of (k/1)T7,.




10.9.2 Interfacing of Digital Systems with Different
Sampling Rates

In practice we frequently encounter the problem of interfacing two digital systems
that are controlled by independently operating clocks. An analog solution to
this problem 5 to convert the signal from the first system to analog form and
then resample it at the input to the second system using the clock in this system.
However, a simpler approach is one where the interfacing 15 done by a digital
method using the basic sample-rate conversion methods described in this chapter.

To be specific, let us consider interfacing the two systems with independent
clocks as shown in Fig. 10.31. The output of system A at rate F, is fed to an
interpolator which increases the sampling rate by /. The output of the interpolator
1s fed at the rate /F, 1o a digital sample-and-hold which serves as the interface to
system B at the high sampling rate / F,. Signals from the digital sample-and-hold
are read out inte system B at the clock rate DF, of system B. Thus the output
rate from the sample-and-hoid is not synchronized with the input rate.

In the special case where D = | and the two clock rates are comparable
but not identical, some samples at the output of the sample-and-hold may be
repeated or dropped at times. The amount of signal distortion resulting from this
method can be kept small if the interpolator/decimator factor is large. By using
linear interpolation in place of the digital sample-and-hold, as we described in
Section 10,8, we can further reduce the distortion and thus reduce the size of the
interpolator factor,

System x(n) ifi IF, Digital sampie IF, o x(m) | System
A Interpolation "1 andhold Decimator ;]
F, DF, F,
Clock” IE, Clock
A B

10.9.3 Impiementation of Narrowband Lowpass Fiiters

In Section 10.6 we demonstrated that a multistage implementation of sampling-
rate conversion often provides for a more efficient realization, especially when the
filter specifications are very tight {(e.g., a narrow passband and a narrow transition
band). Under similar conditions, a lowpass, linear-phase FIR filter may be more
efficiently implemented in a multistage decimator-interpoiator configuration. To
be more specific, we can employ a multistage implementation of a decimator of
size D, followed by a multistage implementation of an interpolator of size I, where
I'=D.




10.9.4 Implementation of Digital Filter Banks

Filter banks are generally categorized as two types, analysis filter banks and syn-
thesis filter banks. An analysis filter bank consists of a set of filters, with system
functions {H,(k)}. arranged in a parallel bank as illustrated in Fig. 10.32a. The
frequency response characteristics of this filter bank splits the signal into a corre-
sponding number of subbands. On the other hand, a synthesis filter bank consists
of a set of filters with system functions {G,{z}}. arranged as shown in Fig. 10.32b,
with corresponding inputs {v.(n)}. The outputs of the filters are summed to form
the synthesized signal {x(n)}.

Filter banks are often used for performing spectrum analysis and signal svn-
thesis. When a filter bank is emploved in the computation of the discrete Fourier
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transform {DFT) of a sequence {x{n)}], the filter bank is called a DFT filter bank.
An analysis filter bank consisting of N filters {H,(z), k=0,1.... . N =1} is called a
uniform DFT filter bank if H.(z). k=1,2...., N --1, are derived from a prototype
filter Hg(z), where

2wk
Hy{w) = Hy (m———;-—) k=12 ....,N=-1 {10.9.2)
Hence the frequency response characteristics of the filters [H.(2). k =0, 1....,
N—1} are simply obtained by uniformly shifting the frequency response of the pro-
totype filter by multiples of 27 /N. In the time domain the filters are characterized
by their impulse responses, which can be expressed as

hi(n) = hg(n)e!>"5/N EF=0,1,....N—=1 (10.9.3)

where {hg(n)} is the impulse response of the prototype filter.

The uniform DFT analysis filter bank can be realized as shown in Fig. 10.33a,
where the frequency components in the sequence {x(n}} are translated in frequency
to lowpass by multiplying x(n) with the complex exponentials exp(— j2rnk/N), k =
I.... N =1, and the resulting product signals are passed through a lowpass filter
with impulse response {hy{n)]. Since the output of the lowpass filter is relatively
narrow in bandwidth, the signal can be decimated by a factor D < N. The resulting
decimated output signal can be expressed as

Xi(m) =} ho(mD — mx(mye™ ™M k=0.1... N -1 (10.9.4)

m=101,...

where {X;(m)} are samples of the DFT at frequencies w; = 2xk/N.

The corresponding synthesis filter for each element in the filter bank can
be viewed as shown in Fig. 10.33b, where the input signal sequences (¥.(m), k =
0,1,...,N =1} are upsampled by a factor of I = D, filtered to remove the
images, and translated in frequency by multiplication by the complex exponentials
lexp(j2rnk/N), k =10, 1.....N —1]. The resulting frequency-translated signals
from the N filters are then summed. Thus we obtain the sequence

iy

N=1 B
vin) = l giZnnkiN z Yi{m)goln — mf)
N k=0 L m |
I"--1 N-1 ) 7
=) goln—ml) 5 S Yam)er2rmkN (10.9.5)
m L k==l i

= D goln — mI)ya(m)

where the factor 1/N is 2 normalization factor, {y,(m)} represent samples of the
inverse DFT sequence corresponding to {Yi(m)}, {go(n)} is the impulse response
of the interpolation filter, and I = D.
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10.9.5 Subband Coding of Speech Signals

A variety of techniques have been developed to efficiently represent speech signals
in digital form for either transmission or storage. Since most of the speech energy
is contained in the lower frequencies, we would like to encode the lower-frequency
band with more bits than the high-frequency band. Subband coding is a method,
where the speech signal is subdivided into sev eraI frequency bands and each band
1s digitally encoded separately.

An example of a f requency subdivision is shown in Fig. 10.37a. Let us as-
sume that the speech signal is sampled at a rate F, samples per second. The
first frequency subdivision splits the signal spectrum into two equal-width seg-
ments, a lowpass signal (0 < F < F,/4) and a highpass signal (F,/4 < F < F,/2).
The second frequency subdivision splits the lowpass signal from the first stage
into two equal bands, a lowpass signal (0 < F < F,/8 and a highpass signal
(F,/8 = F = F,/4). Finally. the third frequency subdivision splits the lowpass
signal from the second stage into two equal bandwidth signals. Thus the sig-
nal is subdivided into four frequency bands, covering three octaves, as shown in
Fig. 10.37b.

Decimation by a factor of 2 1s performed after frequency subdivision. By
allocating a different number of bits per sample to the signal in the four subbands,
we can achieve a reduction in the bit rate of the digitalized speech signal.
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Figure 10.37 Block diagram of a subband specch coder.




Filter design is particularly important in achieving good performance in sub-
band coding. Aliasing resulting from decimation of the subband signals must be
negligible. It is clear that we cannot use brickwall filter characteristics as shown in
Fig. 10.38a, since such filters are physically unrealizable. A particularly practical
solution 1o the aliasing problem is to use guadrature mirror filters (QMF), which
have the frequency response characteristics shown in Fig. 10.38b. These filters are
described in the following section.

The synthesis method for the subband encoded speech signal is basically the
reverse of the encoding process, The signals in adjacent lowpass and highpass
frequency bands are interpolated, filiered, and combined as shown in Fig. 10.39.
A pair of QMF is used in the signal synthesis for each octave of the signal.

Subband coding is also an effective method to achieve data compression in
image signal processing. By combining subband coding with vector quantization
for each subband signal, Safranek et al. (1988) have obtained coded images with
approximately 1 bit per pixel, compared with 8 bits per pixel for the uncoded
image.

In general, subband coding of signals is an effective method for achieving
bandwidth compression in a digital representation of the signal, when the signal
energy is concentrated in a particular region of the frequency band. Multirate
signal processing notions provide efficient implementations of the subband en-
coder.

10.9.6 Quadrature Mirror Filters

The basic building block in applications of quadrature mirror filters (QMF) is
the two-channel QMF bank shown in Fig. 10.40. This is a multirate digital filter
structure that employs two decimators in the “signal analysis” section and two
interpolators in the “signal synthesis” section. The lowpass and highpass filters in
the analysis section have impulse responses ho(n) and 4 (n), respectively. Similarly,
the lowpass and highpass filters contained in the synthesis section have impulse
responses go(n) and g,(n), respectively.

The Fourier transforms of the signals at the outputs of the two decimators

Ja(3)+x (5 ) mo (57|
)i () +x (457 m (457)]

1
Xoolw) = 3 [X(
(10.9.17)
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If X,o(ew) and X,3(w) represent the two inputs to the synthesis section, the output

15 simply
X(w) = X,020)Golw) + X1 (2w)G1(w)




10.9.7 Transmultiplexers

Another application of multirate signal processing is in the design and implemen-
tation of digital transmultiplexers which are devices for converting between time-
division-multiplexed (TDM}) signals and frequency-division-multiplexed (FDM)
signals.

In a transmultiplexer for TDM-10-FDM conversion, the input signal {x{n}}
is a time-division multiplexed signal consisting of L signals, which are separated
by a commutator switch. Each of these L signals are then modulated on different
carrier frequencies to obtain an FDM signal for transmission. In a transmultiplexer
for FDM-to-TDM conversion, the composite signal is separated by filtering into
the L signal components which are then time-division multiplexed.

In telephony, single-sideband transmission is used with channels spaced at
a nominal 4-kHz bandwidth. Twelve channels are usually stacked in frequency
to form a basic group channel, with a bandwidth of 48 kHz. Larger bandwidth
FDM signals are formed by frequency translation of multiple groups into adjacent
frequency bands. We shall confine our discussion to digital transmultiplexers for
12-channel FDM and TDM signals.
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Figure 16.44 Block diagram of FDM-to-TDM transmultipiexer.
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10.9.8 Oversampling A/D and D/A Conversion

Our treatment of oversampling A/D and D/A converters in Chapter 9 provides
another example of multirate signal processing. Recall that an oversampling A/D
converter is implemented by a cascade of an analog sigma-delta modulator (SDM)
followed by a digital antialiasing decimation filter and a digital highpass filter as
shown in Fig. 10.46. The analog SDM produces a 1-bit per sample output at a very
high sampling rate. This 1-bit per sample output is passed through a digital lowpass
filter, which provides a high-precision (multiple-bit) output that is decimated 1o
a lower sampling rate. This output is then passed to a digital highpass filter that
serves 10 attenuate the quantization noise at the lower frequencies.

The reverse operations take place in an oversampling /A converter. as
shown in Fig. 10.47. As illustrated in this figure, the digital signal is passed through
a highpass filter whose output is fed to a digital interpolator (upsampler and anti-
imaging flter). This high-sampling-rate signal is the input to the digital SDM that
provides a high-sampling-rate 1-bit per sample output. The 1-bit per sample output

Analog High — , Low
input Sigma rate Digital _ rate Digital Digital
delta filter and noise-shaping
signal modulator I bit decimator High-precision fileer ourpur
pet sample digital signal

Figare 10.46 Diagram of oversampling A/} converter
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precision digital signal per sample

Figure 10.47 Diagram of oversampling D/A converter

is then converted to an analog signal by lowpass filtering and further smoothing
with analog filters.

Figure 10.48 illustrates the block diagram of a commercial (Analog Devices
ADSP-28 msp02) codec (encoder and decoder) for voice-band signals based on
sigma-delta A/D and D/A converters and analog front-end circuits needed as an
interface to the analog voice-band signals. The nominal sampling rate {after dec-
imation) is 8 kHz and the sampling rate of the SDM is 1 MHz. The codec has a
65-dB SNR and harmonic distortion performance.
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OUTCOMES:

At the end of the course, the student should be able to

’0

*  Apply DFT and FFT algorithms for the analysis of digital signals and systems.

*,

)

% Design FIR filters for various applications.

R

» Design IIR filters for various applications.

L)

++ Characterize the effects of finite precision representation on digital filters.
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